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applied to each one of wy, ..., w, gives the value 0. Buta,,..., s, are linearly
independent as characters of the multiplicative group E* into k**. It follows that
o; = 0fori=1,...,n and our vectors are linearly independent.

Remark. In characteristic 0, one sees much more trivially that the trace is
not identically 0. Indeed, if c €k and ¢ # 0, then Tr(¢) = nc where n = [E : k],
and n # 0. This argument also holds in characteristic p when n is prime to p.

Proposition 5.5. Let E = k(o) be a separable extension. Let
f(X) = Tre(a, k, X),
and let f'(X) be its derivative. Let

f(X)
(X —a)

=Bo+ B X+ + o X!

with B;€ E. Then the dual basis of 1, o, ..., " ! is

ﬁO _ ﬁn— 1
@7 (@)
Proof. Letay,...,a,be the distinct roots of f. Then
- fX)
S m . = X" for 0Zr<n-1.
i;1 (X — o) f'(o) T
To see this, let g(X) be the difference of the left- and right-hand side of this
equality. Then g has degree < n — 1, and has n roots «,, ..., «,. Hence g is

identically zero.
The polynomials

fX) o
(X — o) f'(2)

are all conjugate to each other. If we define the trace of a polynomial with
coefficients in E to be the polynomial obtained by applying the trace to the

coefficients, then
f(X) o
T = X"
r[(X —a) f’(a)}

Looking at the coefficients of each power of X in this equation, we see that

i Bj -
Tr(oc f’(a)) = d;j,

thereby proving our proposition.

Finally we establish a connection with determinants, whose basic properties
we now assume. Let E be a finite extension of k, which we view as a finite
dimensional vector space over k. For each @« € E we have the k-linear map
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multiplication by «,
my: E— E such that m,(x) = ax.

Then we have the determinant det(m,), which can be computed as the determinant
of the matrix M, representing m, with respect to a basis. Similarly we have the
trace Tr(m,), which is the sum of the diagonal elements of the matrix M,,.

Proposition 5.6. Let E be a finite extension of k and let a € E. Then
det(m,) = Ngy(a) and Tr(m,) = Trgu(a).

Proof. Let F = k(a). If [F: k] = d, then 1, a,..., o ! is a basis
for F over k. Let {w;,..., w,} be a basis for E over F. Then {a'w;}
i=0,...,d—1;j=1,...,r) is abasis for E over k. Let

fX)=X+a,_, X'+ ... + q

be the irreducible polynomial of @ over k. Then N, (@) = (—1)%ay, and by the
transitivity of the norm, we have

Negp(a) = Ney(a)'.

The reader can verify directly on the above basis that Ny («) is the determinant
of m, on F, and then that Ng ()" is the determinant of m, on E, thus conclud-
ing the proof for the determinant. The trace is handled exactly in the same way,
except that Trg,(a) = r - Trgy(a). The trace of the matrix for m, on F is equal
to —a,_,. From this the statement identifying the two traces is immediate, as it
was for the norm.

§6. CYCLIC EXTENSIONS

We recall that a finite extension is said to be cyclic if it is Galois and its
Galois group is cyclic. The determination of cyclic extensions when enough roots
of unity are in the ground field is based on the following fact.

Theorem 6.1. (Hilbert’s Theorem 90). Let K/k be cyclic of degree n
with Galois group G. Let ¢ be a generator of G. Let f € K. The norm
N&(B) = N(P) is equal to 1 if and only if there exists an element o # 0 in K
such that § = ajoa.

Proof. Assume such an element « exists. Taking the norm of f we get
N(a)/N(oa). But the norm is the product over all automorphisms in G. Inserting
o just permutes these automorphisms. Hence the norm is equal to 1.

It will be convenient to use an exponential notation as follows. If 7, 7' € G
and ¢ € K we write

ft v ﬁtér"
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By Artin’s theorem on characters, the map given by
id + po + ﬁ1+ao,2 4o ﬂl+a+~--+a"“2o.n-l
on K is not identically zero. Hence there exists 6 € K such that the element
=0+ po° + B1+0002 4 ﬁ1+a+-~+u"‘zea"‘l

is not equal to 0. It is then clear that fo® = « using the fact that N(f) = 1, and
hence that when we apply fo to the last term in the sum, we obtain §. We divide
by a“ to conclude the proof.

Theorem 6.2. Let k be a field, n an integer > 0 prime to the characteristic
of k (if not 0), and assume that there is a primitive n-th root of unity in k.

(1) Let K be a cyclic extension of degree n. Then there exists o. € K such that
K = k(a), and o satisfies an equation X" — a = 0 for some aek.

(i1) Conversely, let ack. Let a be a root of X" — a. Then k(a) is cyclic over
k, of degree d, d|n, and of is an element of k.

Proof. Let { be a primitive n-th root of unity in k, and let K/k be cyclic with
group G. Let o be a generator of G. Wehave N({™') = ({™!)" = 1. By Hilbert’s
theorem 90, there exists a € K such that oo = {a. Since { is in k, we have
o'a = {'afori = 1,...,n Hence the elements {‘x are n distinct conjugates of o
over k, whence [k(x) : k] is at least equal to n. Since [K : k] = n, it follows that
K = k(o). Furthermore,

a(@”) = o(a)" = ((a)" = o".

Hence «" is fixed under ¢, hence is fixed under each power of o, hence is fixed
under G. Therefore " is an element of k, and we let a = «". This proves the
first part of the theorem.

Conversely, let a € k. Let a be a root of X* — a. Then a{’ is also a root for
eachi = 1,..., n, and hence all roots lie in k(«) which is therefore normal over
k. All the roots are distinct so k() is Galois over k. Let G be the Galois group.

If o is an automorphism of k(a)/k then oo is also a root of X" — a. Hence
oo = w,o where o, is an n-th root of unity, not necessarily primitive. The map
o — w, is obviously a homomorphism of G into the group of n-th roots of unity,
and is injective. Since a subgroup of a cyclic group is cyclic, we conclude that
G is cyclic, of order d, and d|n. The image of G is a cyclic group of order d.
If o is a generator of G, then w, is a primitive dth root of unity. Now we get

a(e?) = (o) = (w,0)* = o’

Hence o is fixed under o, and therefore fixed under G. It is an element of k, and
our theorem is proved.
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We now pass to the analogue of Hilbert’s theorem 90 in characteristic p for
cyclic extensions of degree p.

Theorem 6.3. (Hilbert’s Theorem 90, Additive Form). Let k be a field and
K/k a cyclic extension of degree n with group G. Let o be a generator of G.
Let Be K. The trace TrX(p) is equal to 0 if and only if there exists an element
o€ K such that f = o — oo

Proof. 1f such an element o exists, then we see that the trace is 0 because
the trace is equal to the sum taken over all elements of G, and applying ¢ per-
mutes these elements.

Conversely, assume Tr(f) = 0. There exists an element 6 € K such that
Tr(0) # 0. Let

1

= @ L+ B+ 0D 4t Bttt )

o4

From this it follows at once that f = a — ca.

Theorem 6.4. (Artin-Schreier) Let k be a field of characteristic p.

(i) Let K be a cyclic extension of k of degree p. Then there exists o € K such
that K = k(«) and o satisfies an equation X? — X — a = 0 with some
ack.

(ii) Conversely, given a € k, the polynomial f(X) = X? — X — a either has
one root in k, in which case all its roots are in k, or it is irreducible. In
this latter case, if a is a root then k() is cyclic of degree p over k.

Proof. Let K/k be cyclic of degree p. Then TrX(—1) = 0 (it is just the sum
of —1 with itself p times). Let o be a generator of the Galois group. By the
additive form of Hilbert’s theorem 90, there exists « € K such that oo — o = 1,
or in other words, g = o + 1. Hence ¢'a = o + i for all integersi = 1,...,p
and o has p distinct conjugates. Hence [k(«): k] = p. It follows that K = k(a).
We note that

o@ —a)y=o(@)? —a@)=(+ 1)) —(a+1)=0of —a.

Hence o — o is fixed under o, hence it is fixed under the powers of o, and
therefore under G. It lies in the fixed field k. If we let a = of — o we see that
our first assertion is proved.

Conversely, let aek. If o is a root of X? — X — g then o + i is also a
root for i = 1,..., p. Thus f(X) has p distinct roots. If one root lies in k
then all roots lie in k. Assume that no root lies in k. We contend that the



Vi, §7 SOLVABLE AND RADICAL EXTENSIONS 291

polynomial is irreducible. Suppose that
S (X) = g(X)h(X)

with g, hek[X]and 1 £ degg < p. Since
) p
X)) =X —a—=1
i=1

we see that g(X) is a product over certain integers i. Let d = degg. The co-
efficient of X¢~! in g is a sum of terms —(a + i) taken over precisely d integers
i. Hence it is equal to —da + j for some integer j. But d # 0 in k, and hence
a lies in k, because the coefficients of g lie in k, contradiction. We know therefore
that f(X) is irreducible. All roots lie in k(a), which is therefore normal over k.
Since f(X) has no multiple roots, it follows that k(«) is Galois over k. There
exists an automorphism o of k() over k such that oo = o + 1 (because o + 1
is also a root). Hence the powers ¢’ of ¢ give ¢'a = o + ifori = 1,..., pand
are distinct. Hence the Galois group consists of these powers and is cyclic,
thereby proving the theorem.

For cyclic extensions of degree p”, see the exercises on Witt vectors and the
bibliography at the end of §8.

§7. SOLVABLE AND RADICAL EXTENSIONS

A finite extension E/k (which we shall assume separable for convenience) is
said to be solvable if the Galois group of the smallest Galois extension K of k
containing E is a solvable group. This is equivalent to saying that there exists a
solvable Galois extension L of k such that k « E < L. Indeed, we have
k ¢ E <« K = L and G(K/k) is a homomorphic image of G(L/k).

Proposition 7.1.  Solvable extensions form a distinguished class of extensions.

Proof. 1Let E/k be solvable. Let F be a field containing k and assume E, F
are subfields of some algebraically closed field. Let K be Galois solvable over k,
and E < K. Then KF is Galois over F and G(KF/F) is a subgroup of G(K /k)
by Theorem 1.12. Hence EF/F is solvable. It is clear that a subextension of a
solvable extension is solvable. Let E > F > k be a tower, and assume that E/F
is solvable and F/k is solvable. Let K be a finite solvable Galois extension of k
containing F. We just saw that EK/K is solvable. Let L be a solvable Galois
extension of K containing EK. If ¢ is any embedding of L over k in a given
algebraic closure, then K = K and hence oL is a solvable extension of K. We
let M be the compositum of all extensions oL for all embeddings ¢ of L over k.
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Then M is Galois over k, and is therefore Galois over K. The Galois group of
M over K is a subgroup of the product

[1 G(oL/K)

by Theorem 1.14. Hence it is solvable. We have a surjective homomorphism
G(M/k) - G(K/k) by Theorem 1.10. Hence the Galois group of M/k has a
solvable normal subgroup whose factor group is solvable. It is therefore
solvable. Since E = M, our proof is complete.

T
/K

F

k

A finite extension F of k is said to be solvable by radicals if it is separable and
if there exists a finite extension E of k containing F, and admitting a tower
decomposition

k=E,cE,cE,c.---cE,=E
such that each step E;, ,/E; is one of the following types:

1. It is obtained by adjoining a root of unity.

2. Itis obtained by adjoining a root of a polynomial X" — a with a € E; and
n prime to the characteristic.

3. It is obtained by adjoining a root of an equation X? — X — a with
ac€ E; if p is the characteristic > 0.

One can see at once that the class of extensions which are solvable by
radicals is a distinguished class.

Theorem 7.2. Let E be a separable extension of k. Then E is solvable by
radicals if and only if E/k is solvable.

Proof. Assume that E/k is solvable, and let K be a finite solvable Galois
extension of k containing E. Let m be the product of all primes unequal to the
characteristic dividing the degree [K : k], and let F = k({) where ( is a primitive
m-th root of unity. Then F/k is abelian. We lift K over F. Then KF is solvable
over F. There is a tower of subfields between F and KF such that each step is
cyclic of prime order, because every solvable group admits a tower of sub-
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groups of the same type, and we can use Theorem 1.10. By Theorems 6.2 and
6.4, we conclude that KF is solvable by radicals over F, and hence is solvable
by radicals over k. This proves that E/k is solvable by radicals.

/\
N4

Conversely, assume that E/k is solvable by radicals. For any embedding ¢
of E in E* over k, the extension ¢E/k is also solvable by radicals. Hence the
smallest Galois extension K of E containing k, which is a composite of E and
its conjugates is solvable by radicals. Let m be the product of all primes unequal
to the characteristic dividing the degree [K : k] and again let F = k({) where {
is a primitive m-th root of unity. It will suffice to prove that KF is solvable over
F,because it follows then that K F is solvable over k and hence G(K /k) is solvable
because it is a homomorphic image of G(KF/k). But KF/F can be decomposed
into a tower of extensions, such that each step is of prime degree and of the type
described in Theorem 6.2 or Theorem 6.4, and the corresponding root of unity
is in the field F. Hence KF/F is solvable, and our theorem is proved.

Remark. One could modify our preceding discussion by not assuming
separability. Then one must deal with normal extensions instead of Galois
extensions, and one must allow equations X? — g in the solvability by radicals,
with p equal to the characteristic. Then we still have the theorem corresponding
to Theorem 7.2. The proof is clear in view of Chapter V, §6.

For a proof that every solvable group is a Galois group over the rationals, I
refer to Shafarevich [Sh 54], as well as contributions of Iwasawa [Iw 53].

[Iw 53] K. Iwasawa, On solvable extension of algebraic number fields, Ann. of Math.
58 (1953), pp. 548-572

[Sh 54] 1. SHAFAREVICH, Construction of fields of algebraic numbers with given solvable
Galois group, Izv. Akad. Nauk SSSR 18 (1954), pp. 525-578 (Amer. Math.
Soc. Transl. 4 (1956), pp. 185-237)

§8. ABELIAN KUMMER THEORY

In this section we shall carry out a generalization of the theorem concerning
cyclic extensions when the ground field contains enough roots of unity.

Let k be a field and m a positive integer. A Galois extension K of k with
group G is said to be of exponent m if 6™ = 1 for all 6 € G.
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We shall investigate abelian extensions of exponent m. We first assume
that m is not a multiple of the characteristic of k (if not 0), and that k contains
the group of m-th roots of unity which we denote by p,,. We assume that all
our algebraic extensions in this section are contained in a fixed algebraic closure
k2.

Let ae k. The symbol a'/™ (or ¥a) is not well defined. If " = a and  is
an m-th root of unity, then ({a)™ = a also. We shall use the symbol a'™ to
denote any such element a, which will be called an m-th root of a. Since the
roots of unity are in the ground field, we observe that the field k(«) is the same
no matter which m-th root « of a we select. We denote this field by k(a'/™).

We denote by k*™ the subgroup of k* consisting of all m-th powers of non-
zero elements of k. It is the image of k* under the homomorphism x - x™.

Let B be a subgroup of k* containing k*™. We denote by k(B'/™) or K 5 the
composite of all fields k(a'/™) with a € B. It is uniquely determined by B as a
subfield of k2.

Let a e B and let a be an m-th root of a. The polynomial X™ — a splits into
linear factors in K, and thus K is Galois over k, because this holds for all
a€B. Let G be the Galois group. Let 6 e G. Then oa = w,a for some m-th
root of unity w, e p,, = k*. The map

o,

is obviously a homomorphism of G into p,,, i.e. for 7, 6 € G we have
00 = W, W0 = W, 0,0

We may write w, = ga/a. This root of unity w, is independent of the choice
of m-th root of a, for if a' is another m-th root, then o' = {a for some {ep,,,
whence

od' /o’ = {oa/loa = oa/a.
We denote w, by {a, a). The map
(0,a) <o, a)

gives us a map
G x B—-p,,.

Ifa,be Band o™ = a, " = b then (af)" = ab and
a(ap)/ap = (oojoa)(ap/p).

We conclude that the map above is bilinear. Furthermore, if a € k*™ it follows
that {¢,a) = 1.

Theorem 8.1. Let k be a field, m an integer > O prime to the characteristic of
k (if not 0). We assume that k contains p,,. Let B be a subgroup of k* con-
taining k™™ and let Kg = k(B'/™). Then Kp is Galois, and abelian of expo-
nent m. Let G be its Galois group. We have a bilinear map

G x B-op, givenby (o,a) {o,a).
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IfceGand ae B, and o™ = athen {o,a) = gafa. The kernel on the left is 1
and the kernel on the right is k*". The extension K g/k is finite if and only if
(B : k*™) is finite. If that is the case, then

B/k*m = G,

and in particular we have the equality

[Kg:k] = (B:k*™).

Proof. Let 6 € G. Suppose o, a) = 1 for all ae B. Then for every gener-
ator o of Kz such that «™ = a € B we have oo = o. Hence ¢ induces the identity
on K and the kernel on the left is 1. Let a € B and suppose <o, ay = 1 for all
o € G. Consider the subfield k(a'’™) of Kz. If a'/™ is not in k, there exists an
automorphism of k(a'’™) over k which is not the identity. Extend this auto-
morphism to K, and call this extension ¢. Then clearly {o,a) # 1. This
proves our contention.

By the duality theorem of Chapter I, §9 we see that G is finite if and only
if B/k*™ is finite, and in that case we have the isomorphism as stated, so that
in particular the order of G is equal to (B : k*™), thereby proving the theorem.

Theorem 8.2. Notation being as in Theorem 8.1, the map B+ Ky gives a
bijection of the set of subgroups of k* containing k*™ and the abelian extensions
of k of exponent m.

Proof. Let By, B, be subgroups of k* containing k*". If B, = B, then
k(B'™ < k(B3™). Conversely, assume that k(B!'™) c k(BL}™). We wish to
prove B, = B,. Let be B,. Then k(b*'™) < k(B.™) and k(b''™) is contained in
a finitely generated subextension of k(B3'™). Thus we may assume without loss
of generality that B,/k*" is finitely generated, hence finite. Let B be the sub-
group of k* generated by B, and b. Then k(B'™) = k(B1'™) and from what we
saw above, the degree of this field over k is precisely

(B, :k*™) or (Bjy:k*").

Thus these two indices are equal, and B, = B5. This proves that B, = B,.

We now have obtained an injection of our set of groups B into the set of
abelian extensions of k of exponent m. Assume finally that K is an abelian
extension of k of exponent m. Any finite subextension is a composite of cyclic
extensions of exponent m because any finite abelian group is a product of
cyclic groups, and we can apply Corollary 1.16. By Theorem 6.2, every cyclic
extension can be obtained by adjoining an m-th root. Hence K can be obtained
by adjoining a family of m-th roots, say m-th roots of elements {b;}., with
b;e k*. Let B be the subgroup of k* generated by all b; and k*™. If b’ = ba™
with a, b € k then obviously

k(b'Um) = k(b'™).
Hence k(B''™) = K, as desired.
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When we deal with abelian extensions of exponent p equal to the char-
acteristic, then we have to develop an additive theory, which bears the same
relationship to Theorems 8.1 and 8.2 as Theorem 6.4 bears to Theorem 6.2.

If k is a field, we define the operator p by

Px)=x7 — x

for x e k. Then g is an additive homomorphism of k into itself. The subgroup
(k) plays the same role as the subgroup k*™ in the multiplicative theory,
whenever m is a prime number. The theory concerning a power of p is slightly
more elaborate and is due to Witt.

We now assume k has characteristic p. A root of the polynomial X? —~ X — a
with a € k will be denoted by o~ 'a. If B is a subgroup of k containing pk
we let Ky = k(g% ~'B) be the field obtained by adjoining ¢ ~'a to k for all a € B.
We emphasize the fact that B is an additive subgroup of k.

Theorem 8.3. Let k be a field of characteristic p. The map B k(¢ 'B)
is a bijection between subgroups of k containing gk and abelian extensions of
k of exponent p. Let K = Ky = k(p~'B), and let G be its Galois group.
Ifoe Ganda € B,and po = a,let {g,a) = g — a. Then we have a bilinear
map

G x B— Z/pZ given by (o,a)— {0, a).

The kernel on the left is 1 and the kernel on the right is gk. The extension
Kp/k is finite if and only if (B : gk) is finite and if that is the case, then

[Kz: k] = (B: pk).

Proof. The proof is entirely similar to the proof of Theorems 8.1 and 8.2.
It can be obtained by replacing multiplication by addition, and using the “ p-th
root” instead of an m-th root. Otherwise, there is no change in the wording of
the proof.

The analogous theorem for abelian extensions of exponent p" requires
Witt vectors, and will be developed in the exercises.
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§9. THE EQUATION X" -a=0

When the roots of unity are not in the ground field, the equation X" — a = 0
is still interesting but a little more subtle to treat.

Theorem 9.1. Letk be afield and naninteger > 2. Letack,a # 0. Assume
that for all prime numbers p such that p|n we have a ¢ k?, and if 4|n then
a¢ —4k*. Then X" — ais irreducible in k[ X].

Proof. Our first assumption means that a is not a p-th power in k. We
shall reduce our theorem to the case when n is a prime power, by induction.
Write n = p'm with p prime to m, and p odd. Let

X" —a=[](X -a)
v=1

be the factorization of X™ — g into linear factors, and say a = «;. Substituting
X7 for X we get

X'—a=X""—-a=[](X" - ua,).
v=1
We may assume inductively that X™ — a is irreducible in k[X]. We contend
that « is not a p-th power in k(x). Otherwise, « = 7, Bek(x). Let N be the
norm from k() to k. Then

—a = (—-1)"N(®) = (=1)"N(B?) = (= 1)"N(B)".

If mis odd, a is a p-th power, which is impossible. Similarly, if m is even and p
is odd, we also get a contradiction. This proves our contention, because m is
prime to p. If we know our theorem for prime powers, then we conclude that
XP" — «is irreducible over k(a). If 4 is a root of X?" — « then k < k(«) = k(A)
gives a tower, of which the bottom step has degree m and the top step has degree
p". It follows that 4 has degree n over k and hence that X" — a is irreducible.

We now suppose that n = p" is a prime power.

If p is the characteristic, let o be a p-th root of a. Then X? — g = (X — «)”
and hence X” — a = (X' — a)? if r = 2. By an argument even more trivial
than before, we see that a is not a p-th power in k(a), hence inductively
XP""' — @ is irreducible over k(). Hence X*" — q is irreducible over k.

Suppose that p is not the characteristicc. We work inductively again, and
let « be a root of X? — a.

Suppose a is not a p-th power in k. We claim that XP — a is irreducible.
Otherwise a root a of X — a generates an extension k(a) of degree d < p
and a? = a. Taking the norm from k(a) to k we get N(a)? = a?. Since d is
prime to p, it follows that a is a p-th power in &, contradiction.
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Letr =2 Weleta = a,. We have

Xr—a= D(X—ocv)

v

and
p
¥ -a=[]l " - ay.
v=1
Assume that a is not a p-th power in k(). Let 4 be aroot of X” ' — a. Ifp
is odd then by induction, A has degree p”~ ' over k(«), hence has degree p” over
k and we are done. If p = 2, suppose o = —48* with fek(x). Let N be the
norm from k() to k. Then —a = N(a) = 16N(B)*, so —a is a square in k. Since
p=2weget V—1¢k(a)and a = (V—128%?2, a contradiction. Hence again
by induction, we find that A has degree p” over k. We therefore assume that
a = BP with some B € k(a), and derive the consequences.
Taking the norm from k(o) to k we find

—a = (=1)N(@) = (= 1N(B") = (= D’N(B)".

If p is odd, then a is a p-th power in k, contradiction. Hence p = 2, and

—a = N()?
is a square in k. Write —a = b? with b e k. Since a is not a square in k we con-
clude that — lisnotasquareink. Leti? = —1. Over k(i) we have the factoriza-

tion
XY —a=X"+b>= (X" +ib)X¥ " —ib).

Each factor is of degree 2"~ ! and we argue inductively. If X' + ibisreducible
over k(i) then +ib is a square in k(i) or lies in —4(k(i))*. In either case, +ibisa
square in k(i), say

+ib = (¢ + di)? = ¢ + 2cdi — d*

with ¢, d € k. We conclude that ¢2 = d2 or ¢ = *d, and *ib = 2cdi = *2c%.
Squaring gives a contradiction, namely

a= —b’>= —4c*

We now conclude by unique factorization that X? + b? cannot factor in
k[ X1, thereby proving our theorem.

The conditions of our theorem are necessary because
X* 4 4b* = (X2 + 2bX + 2b%)(X? — 2bX + 2b?).

If n = 4m and a € —4k* then X" — a is reducible.
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Corollary 9.2. Let k be a field and assume that ae k, a # 0, and that a is not
a p-th power for some prime p. If p is equal to the characteristic, or if p is odd,
then for every integer r 2 1 the polynomial X*" — a is irreducible over k.

Proof. The assertion is logically weaker than the assertion of the theorem.

Corollary 9.3. Let k be a field and assume that the algebraic closure k?* of k
is of finite degree > 1 over k. Then k* = k(i) where i* = —1, and k has
characteristic 0.

Proof. We note that k* is normal over k. If k* is not separable over k, so
char k = p > 0, then k? is purely inseparable over some subfield of degree >
1 (by Chapter V, §6), and hence there is a subfield E containing k, and an element
a € E such that XP — q is irreducible over E. By Corollary 9.2, k* cannot be of
finite degree over E. (The reader may restrict his or her attention to characteristic
0 if Chapter V, §6 was omitted.)

We may therefore assume that k* is Galois over k. Let k; = k(i). Then k*
is also Galois over k,. Let G be the Galois group of k*/k,. Suppose that there
is a prime number p dividing the order of G, and let H be a subgroup of order p.
Let F be its fixed field. Then [k*: F] = p. If pis the characteristic, then Exercise
29 at the end of the chapter will give the contradiction. We may assume that p
is not the characteristic. The p-th roots of unity # 1 are the roots of a poly-
nomial of degree < p — 1 (namely X?~! 4 --- 4+ 1), and hence must lie in F.
By Theorem 6.2, it follows that k* is the splitting field of some polynomial
XP — a with ae F. The polynomial X?* — a is necessarily reducible. By the
theorem, we must have p = 2 and a = —4b* with be F. This implies

k* = F(a''?) = F(i).

But we assumed i € k,, contradiction.

Thus we have proved k* = k(i). It remains to prove that char k = 0, and for
this I use an argument shown to me by Keith Conrad. We first show that a sum
of squares in k is a square. It suffices to prove this for a sum of two squares,
and in this case we write an element x + iy € k(i) = k* as a square.

x+iy:(u+iv)2, x, y,u,vek,

and then x2 + y2 = (u? + v?)>. Then to prove k has characteristic 0, we merely
observe that if the characteristic is > 0, then —1 is a finite sum 1 + ... + 1,
whence a square by what we have just shown, but k2 = k(i), so this concludes
the proof.

Corollary 9.3 is due to Artin; see [Ar 24], given at the end of Chapter XI.
In that chapter, much more will be proved about the field k.

Example 1. Letk = Q and let G = G(Q?*/Q). Then the only non-trivial
torsion elements in G have order 2. It follows from Artin’s theory (as given
in Chapter XI) that all such torsion elements are conjugate in Go. One uses
Chapter XI, Theorems 2.2, 2.4, and 2.9.)
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Example 2. Let k be a field of characteristic not dividing n. Let a € k,
a ¥ 0 and let K be the splitting field of X" — a. Let a be one root of
X" — a, and let { be a primitive n-th root of unity. Then

K =ka, ) = k(a, p,).

We assume the reader is acquainted with matrices over a commutative ring. Let
o € Ggy- Then (ca)" = a, so there exists some integer b = b(o) uniquely
determined mod n, such that

o(a) = al??.

Since o induces an automorphism of the cyclic group p,, there exists an integer
d(o) relatively prime to n and uniquely determined mod # such that o({) =
{49 Let G(n) be the subgroup of GL,(Z/nZ) consisting of all matrices

1 0
M= <b d> withb € Z/nZ and d € (Z/nZ)*.

Observe that #G(n) = ne(n). We obtain an injective map

1 0

o> M(o) = (b(a) d(0)

) of Ggy = G(n),

which is immediately verified to be an injective homomorphism. The question
arises, when is it an isomorphism? The next theorem gives an answer over some
fields, applicable especially to the rational numbers.

Theorem 9.4. Let k be a field. Let n be an odd positive integer prime to the
characteristic, and assume that [k(p,) : k] = @(n). Let a € k, and suppose that
for each prime p|n the element a is not a p-th power in k. Let K be the splitting
field of X" — a over k. Then the above homomorphism o +— M(o) is an
isomorphism of Gy, with G(n). The commutator group is Gal(K/k(p,)), so
k(w,,) is the maximal abelian subextension of K.

Proof. This is a special case of the general theory of §11, and Exercise 39,
taking into account the representation of G in the group of matrices. One need
only use the fact that the order of Ggy; is ne(n), according to that exercise, and
50 #(Gg,) = #G(n), so Gk, = G(n). However, we shall given an independent
proof as an example of techniques of Galois theory. We prove the theorem by
induction.

Suppose first n = p is prime. Since [k(p,) : k] = p — 1 is prime to p, it
follows that if a is a root of X? — a, then k(a) N k(p,) = k because
[k(a) : k] = p. Hence [K : k] = p(p — 1), so Ggy = G(p).

A direct computation of a commutator of elements in G(n) for arbitrary n
shows that the commutator subgroup is contained in the group of matrices

1 0
(b ]>,beZ/nZ,
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and so must be that subgroup because its factor group is isomorphic to (Z/nZ)*
under the projection on the diagonal. This proves the theorem when n = p.

Now let p|n and write n = pm. Then [k(p,,) : k] = @(m), immediately from
the hypothesis that [k(p,) : k] = @(n). Let « be a root of X" — a, and let
B = of. Then B is a root of X™ — a, and by induction we can apply the theorem
to X™ — a. The field diagram is as follows.

k(a, p,)
KB w) \
/

k(o)

k()
/
\ kY "

k m

Since a has degree pm over k, it follows that « cannot have lower degree than
pover k(B), so [k(a) : k(B)] = p and X? — B is irreducible over k(B). We apply
the first part of the proof to X? — B over k(). The property concerning the
maximal abelian subextension of the splitting field shows that

k() N k(B, wy) = k().

Hence [k(a, m,) : k(B, p,)] = p. By induction, [k(83, p,) : k(p,)] = m, again
because of the maximal abelian subextension of the splitting field of X™ — a
over k. This proves that [K : k] = ne(n), whence Gg,, = G(n), and the commutator
statement has already been proved. This concludes the proof of Theorem 9.4.

Remarks. When r is even, there are some complications, because for
instance Q(\/E) is contained in Q(pyg), so there are dependence relations among
the fields in question. The non-abelian extensions, as in Theorem 9.4, are of
intrinsic interest because they constitute the first examples of such extensions
that come to mind, but they arose in other important contexts. For instance,
Artin used them to give a probabilistic model for the density of primes p such
that 2 (say) is a primitive root mod p (that is, 2 generates the cyclic group
(Z/pZ)*. Instead of 2 he took any non-square integer # *+1. At first, Artin did
not realize explicitly the above type of dependence, and so came to an answer
that was off by some factor in some cases. Lehmer discovered the discrepancy
by computations. As Artin then said, one has to multiply by the “obvious” factor
which reflects the field dependencies. Artin never published his conjecture, but
the matter is discussed in detail by Lang-Tate in the introduction to his collected
papers (Addison-Wesley, Springer Verlag).

Similar conjectural probabilistic models were constructed by Lang-Trotter in
connection with elliptic curves, and more generally with certain p-adic repre-
sentations of the Galois group, in “Primitive points on elliptic curves”, Bull.
AMS 83 No. 2 (1977), pp. 289-292; and [LaT 75] (end of §14).

For further comments on the p-adic representations of Galois groups, see §14
and §15.
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§10. GALOIS COHOMOLOGY

Let G be a group and A an abelian group which we write additively for the
general remarks which we make, preceding our theorems. Let us assume that
G operates on A, by means of a homomorphism G — Aut(4). By a 1-cocycle of
G in A one means a family of elements {«,}, . with a, € A4, satisfying the relations

Oy + 00, = 0,

foralle,teG. If {a,},.c and {B,},.¢ are 1-cocycles, then we can add them to
get a l-cocycle {a, + f,},c6- It is then clear that 1-cocycles form a group,
denoted by Z'(G, A). By a 1-coboundary of G in A one means a family of ele-
ments {o,},.c such that there exists an element f e A for which o, = 6ff — f8
for all o€ G. It is then clear that a 1-coboundary is a 1-cocycle, and that the
1-coboundaries form a group, denoted by B'(G, 4). The factor group

Z(G, A)/B'(G, 4)
is called the first cohomology group of G in 4 and is denoted by H(G, A).
Remarks. Suppose G is cyclic. Let

Tr;: A — A be the homomorphism a - E o(a).

oeG

Let 7y be a generator of G. Let (1 — y)A be the subgroup of A consisting of all
elements a — y(a) with a € A. Then (1 — y)A is contained in ker Tr;. The
reader will verify as an exercise that there is an isomorphism

ker Trg/(1 — YA ~ H'(G, A).

Then the next theorem for a cyclic group is just Hilbert’s Theorem 90 of §6.
Cf. also the cohomology of groups, Chapter XX, Exercise 4, for an even more
general context.

Theorem 10.1. Let K/k be a finite Galois extension with Galois group G.
Then for the operation of G on K* we have H (G, K*) = 1,and for the
operation of G on the additive group of K we have H'(G, K) = 0. In other
words, the first cohomology group is trivial in both cases.

Proof. Let {«,},.; be a 1-cocycle of G in K*. The multiplicative cocycle
relation reads
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By the linear independence of characters, there exists 6 € K such that the element

B= 3 a0

teG

is # 0. Then
of =) alot(6) = Y a,.a, 'o1(6)

1€G 1eG

= a;.l Z aJCGT(H) = ad-lﬁ'

teG

We get a, = B/of, and using f~! instead of B gives what we want.

For the additive part of the theorem, we find an element 8 € K such that the
trace Tr(6) is not equal to 0. Given a 1-cocycle {a,} in the additive group of K,
we let

I

BzT}(—BjreG

It follows at once that a, = f — ¢, as desired.

The next lemma will be applied to the non-abelian Kummer theory of the
next section.

Lemma 10.2. (Sah). Let G be a group and let E be a G-module. Let T be in
the center of G. Then H'(G, E) is annihilated by the map x+ tx — x on E.
In particular, if this map is an automorphism of E, then H(G, E) = 0.

Proof. Let f be a 1-cocycle of G in E. Then

f(o) = f(zor™) = f(1) + 2(f(o")
=f@) + (o) + of " 1)].

Therefore
¥(0) = f(0) = —otf (™) - f(2).
But f(1) = f(1) + f(1) implies f(1) = 0, and
0=f(1)=f(r™) =f@) + (")

This shows that (7 — 1) f(o) = (6 — 1) (1), so (t — 1)f is a coboundary. This
proves the lemma.
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§11. NON-ABELIAN KUMMER EXTENSIONS

We are interested in the splitting fields of equations X" — a = 0 when the
n-th roots of unity are not contained in the ground field. More generally, we
want to know roughly (or as precisely as possible) the Galois group of simul-
taneous equations of this type. For this purpose, we axiomatize the pattern
of proof to an additive notation, which in fact makes it easier to see what is
going on.

We fix an integer N > 1, and we let M range over positive integers divid-
ing N. We let P be the set of primes dividing N. We let G be a group, and let:

A = G-module such that the isotropy group of any element of A is of finite
index in G. We also assume that A is divisible by the primes p|N,
that is

pA = A for all pe P.

I' = finitely generated subgroup of 4 such that I' is pointwise fixed by G.
1
We assume that Ay is finite. Then N I' is also finitely generated. Note that

1
NFDAN

Example. For our purposes here, the above situation summarizes the
properties which hold in the following situation. Let K be a finitely generated
field over the rational numbers, or even a finite extension of the rational numbers.
We let 4 be the multiplicative group of the algebraic closure K. Welet G = Gk
be the Galois group Gal(K?/K). We let I be a finitely generated subgroup of
the multiplicative group K*. Then all the above properties are satisfied. We

. . . 1
see that Ay = py is the group of N-th roots of unity. The group written N r
in additive notation is written I'*/¥ in multiplicative notation.

Next we define the appropriate groups analogous to the Galois groups of
Kummer theory, as follows. For any G-submodule B of 4, we let:

G(B) = image of G in Aut(B),
G(N) = G(Ay) = image of G in Aut(Ay),

H(N) = subgroup of G leaving Ay pointwise fixed,

1
H(M, N) (for M|N) = image of H(N) in Aut(ﬁ F).
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Then we have an exact sequence:
1
0 H(M,N) - G(M I+ AN) - G(N) - 0.

Example. In the concrete case mentioned above, the reader will easily
recognize these various groups as Galois groups. For instance, let 4 be the
multiplicative group. Then we have the following lattice of field extensions
with corresponding Galois groups:

/M
K(uN,lr )} (M. )
Gy Ky
| }G(N)
K

In applications, we want to know how much degeneracy there is when we trans-
late K(py, T''™) over K(py) with M|N. This is the reason we play with the
pair M, N rather than a single N.

Let us return to a general Kummer representation as above. We are in-
terested especially in that part of (Z/NZ)* contained in G(N), namely the group
of integers n (mod N) such that there is an element [n] in G(N) such that

(n]a = na forallae Ay.

Such elements are always contained in the center of G(N), and are called
homotheties.
Write

N = II pn(p)

Let S be a subset of P. We want to make some non-degeneracy assumptions
about G(N). We call S the special set.
There is a product decomposition

(Z/NZy* = [ (Z/p"Z)*.

pIN

If 2| N we suppose that 2 € S. For each p € S we suppose that there is an integer
c(p) = p’P with f(p) = 1 such that

G(Ay) H Uc(p) X n (Z/Pn(p)z)*,

peS p¢sS

where U, is the subgroup of Z(p"?) consisting of those elements =1 mod c(p).
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The product decomposition on the right is relative to the direct sum decom-
position

AN = @ Apn(p)'
pIN
The above assumption will be called the non-degeneracy assumption. The

integers c(p) measure the extent to which G(4y) is degenerate.
Under this assumption, we observe that

[2}€ G(A,) if M|N and M is not divisible by primes of S;
[1+cleG(4y) if M]|N and M is divisible only by primes of S,
where

c=cS) = []e(p).
peS
We can then use [2] — [1] = [1] and [1 + ¢] — [1] = [c] in the context of
Lemma 10.2, since [1] and [c] are in the center of G.
For any M we define

M) = [] c(p)
pIM
pesS
Define
I = % I'nA°

and the exponent
e(I''/T") = smallest positive integer e such that el” = T

It is clear that degeneracy in the Galois group H(M, N) defined above can
arise from lots of roots of unity in the ground field, or at least degeneracy in
the Galois group of roots of unity; and also if we look at an equation

XM _aqa=0,

from the fact that a is already highly divisible in K. This second degeneracy
would arise from the exponent e(I"'/T"), as can be seen by looking at the Galois
group of the divisions of I'. The next theorem shows that these are the only
sources of degeneracy.

We have the abelian Kummer pairing for M|N,

H{(M,N) x I'/MI" - A,, givenby (1,x)r>1)y — 3y,

where y is any element such that My = x. The value of the pairing is indepen-



VI, §11 NON-ABELIAN KUMMER EXTENSIONS 307

dent of the choice of y. Thus for x e I', we have a homomorphism
@ HH(M, N) - Ay
such that
p(t1)=1y—y,  where My = x.
Theorem 11.1. Let M|N. Let ¢ be the homomorphism
¢:I" > Hom(H(M, N), Ay)

and let T, be its kernel. Let ey(T") = g.c.d. (e(I'/T), M). Under the non-
degeneracy assumption, we have

c(M)ey (I, = MT.
Proof. Let xeT and suppose ¢, = 0. Let My = x. ForceG let
Yo =0y =Y.

Then {y,} is a 1-cocycle of G in A,,, and by the hypothesis that ¢, = 0, this
cocycle depends only on the class of ¢ modulo the subgroup of G leaving the
elements of Ay fixed. In other words, we may view {y,} as a cocycle of G(N) in
Ay. Let ¢ = ¢(N). By Lemma 10.2, it follows that {cy,} splits as a cocycle of
G(N)in A,,. In other words, there exists t, € A,, such that

cya = Jt() - th
and this equation in fact holds for 6 € G. Let t be such that ¢t = t,. Then
coy — ¢y = act — ¢y,

. o1
whence c(y — t) is fixed by all 0 € G, and therefore lies in — I'. Therefore

e(I'/Te(y — el

We multiply both sides by M and observe that cM(y — t) = ¢cMy = ¢x. This
shows that

o(N)e(I"/T)T, = MT.

Since I'/MT has exponent M, we may replace e(I"'/T") by the greatest common
divisor as stated in the theorem, and we can replace ¢(N) by c¢(M) to conclude
the proof.

Corollary 11.2.  Assume that M is prime to 2(I"' : T') and is not divisible by
any primes of the special set S. Then we have an injection

@:I'/MI" > Hom(H{M, N), A,,).
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If in addition T is free with basis {a,, . . ., a,}, and we let ¢; = ¢, , then the map
Hi(M, N) > A3} givenby © - (¢(7), ..., (1))
is injective. If Ay is cyclic of order M, this map is an isomorphism.

Proof. Under the hypotheses of the corollary, we have ¢(M) =1 and
¢y(I') = 1in the theorem.

Example. Consider the case of Galois theory when A is the multiplicative
group of K2 Letay,...,a, be elements of K* which are multiplicatively inde-
pendent. They generate a group as in the corollary. Furthermore, 4, = py
is cyclic, so the corollary applies. If M is prime to 2(I" : ') and is not divisible
by any primes of the special set S, we have an isomorphism

@ :T/MI" > Hom(H(M, N), p).

§12. ALGEBRAIC INDEPENDENCE OF
HOMOMORPHISMS

Let A be an additive group, and let K be a field. Let 4,,...,4,: 4 > K be
additive homomorphisms. We shall say that 1,, ..., 4, are algebraically
dependent (over K) if there exists a polynomial f(X,,...,X,) in
K[X,, ..., X,] such that for all x € 4 we have

f(’ll(x)a ] /1,,()()) = 09

but such that f does not induce the zero function on K™, i.e. on the direct
product of K with itself n times. We know that with each polynomial we can
associate a unique reduced polynomial giving the same function. If K is
infinite, the reduced polynomial is equal to f itself. In our definition of de-
pendence, we could as well assume that f is reduced.

A polynomial f(X 4, ..., X,) will be called additive if it induces an additive
homomorphism of K™ into K. Let (Y) = (Y,,..., Y,) be variables inde-
pendent from (X). Let

gX, V) =f(X +Y) - f(X) - f(Y)

where X + Y is the componentwise vector addition. Then the total degree of
g viewed as a polynomial in (X) with coefficients in K[Y] is strictly less than
the total degree of f, and similarly, its degree in each X is strictly less than the
degree of f in each X,;. One sees this easily by considering the difference of
monomials,
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My(X + Y) = M,(X) = M(Y)
= (X, + X)X+ )" = X X = Yy Y

A similar assertion holds for g viewed as a polynomial in (Y) with coefficients in
K[X].

If f'is reduced, it follows that g is reduced. Hence if f is additive, it follows
that g is the zero polynomial.

Example. Let K have characteristic p. Then in one variable, the map
Ealh”

for ae K and m > 1 is additive, and given by the additive polynomial aX?".
We shall see later that this is a typical example.

Theorem 12.1. (Artin). Let A,...,4,: A —> K be additive homomorph-
isms of an additive group into a field. If these homomorphisms are alge-
braically dependent over K, then there exists an additive polynomial

f(Xb""Xn)?l"O

in K[ X] such that

S (), ..., 4(x) =0
forall xe A.

Proof. Let f(X)=f(X,,..., X,)e K[X] be a reduced polynomial of
lowest possible degree such that f# 0 but for all x € 4, f(A(x)) = 0, where
A(x) is the vector (4,(x), ..., 4,(x)). We shall prove that f'is additive.

Letg(X,Y)=f(X + Y) — f(X) — f(Y). Then

g(AX), A) = f(Alx + ) = f(AX) = f(A(y) =0

for all x, y e A. We shall prove that g induces the zero function on K™ x K™,
Assume otherwise. We have two cases.

Case 1. We have g(& A(y) =0 for all (e K™ and all ye A. By
hypothesis, there exists & e K™ such that g(£, Y) is not identically 0. Let
P(Y) = g(&, Y). Since the degree of g in (Y) is strictly smaller than the degree
of f, we have a contradiction.

Case 2. There exist £'€e K™ and y € A such that g(&, A(y)) # 0. Let
P(X) = g(X, A(y")). Then P is not the zero polynomial, but P(A(x)) = 0 for all
X € A, again a contradiction.
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We conclude that g induces the zero function on K™ x K™, which proves
what we wanted, namely that fis additive.

We now consider additive polynomials more closely.
Let f be an additive polynomial in n variables over K, and assume that f'is
reduced. Let

f(X)=f0,....X,,...,0)

with X in the i-th place, and zeros in the other components. By additivity, it
follows that

f(XI’""Xn):fl(Xl) + o +f;:(Xn)

because the difference of the right-hand side and left-hand side is a reduced
polynomial taking the value 0 on K™. Furthermore, each f; is an additive
polynomial in one variable. We now study such polynomials.

Let f(X) be a reduced polynomial in one variable, which induces a linear
map of K into itself. Suppose that there occurs a monomial a,X" in f with
coefficient a, # 0. Then the monomials of degree r in

g X, V) =f(X +Y) = f(X) - f(Y)
are given by
aX + Yy —a,X —aY"

We have already seen that g is identically 0. Hence the above expression is
identically 0. Hence the polynomial

X+Yy—X Y

is the zero polynomial. It contains the term rX"~'Y. Hence if r > 1, our field
must have characteristic p and r is divisible by p. Write r = p™s where s is
prime to p. Then

0=(X+ Yy =X — Y = (X" + Yy — (X7") — (Y™

Arguing as before, we conclude that s = 1.
Hence if fis an additive polynomial in one variable, we have

S0 = ¥ aX",

with a, € K. In characteristic 0, the only additive polynomials in one variable
are of type aX with ae K.

As expected, we define 4, . . ., 4, to be algebraically independent if, whenever
fis a reduced polynomial such that f(A(x)) = 0 for all x € K, then fis the zero
polynomial.
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We shall apply Theorem 12.1 to the case when 4,, .. ., 4, are automorphisms
of a field, and combine Theorem 12.1 with the theorem on the linear indepen-
dence of characters.

Theorem 12.2. Let K be an infinite field, and let o, ..., 6, be the distinct
elements of a finite group of automorphisms of K. Then o4, ..., g, are alge-
braically independent over K.

Proof. (Artin). In characteristic 0, Theorem 12.1 and the linear inde-
pendence of characters show that our assertion is true. Let the characteristic
be p > 0, and assume that o, ..., ¢, are algebraically dependent.

There exists an additive polynomial f(X,,...,X,) in K[X] which is
reduced, f # 0, and such that

flo(x),...,0,x) =0
for all xe K. By what we saw above, we can write this relation in the form
Z Z a,0(xy’ =0

i=1r=1

for all x € K, and with not all coefficients a;, equal to 0. Therefore by the linear
independence of characters, the automorphisms

{6?"} with i=1,...,n and r=1,...,m
cannot be all distinct. Hence we have
of =ao¥
with eitheri # jorr # s. Sayr < s. For all xe K we have
() = o).
Extracting p-th roots in characteristic p is unique. Hence
ax) = o (x)"" =g (x")

forall xe K. Leto = ¢;'0;. Then

r

o(x) = x"~

for all x e K. Taking ¢" = id shows that

n(s—r)

x = x*

for all x e K. Since K is infinite, this can hold only if s = r. But in that case,
o; = 0, contradicting the fact that we started with distinct automorphisms.
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§13. THE NORMAL BASIS THEOREM

Theorem 13.1. Let K/k be a finite Galois extension of degreen. Leta,,...,0,
be the elements of the Galois group G. Then there exists an element w € K
such that ow, ..., o,w form a basis of K over k.

Proof. We prove this here only when k is infinite. The case when k is
finite can be proved later by methods of linear algebra, as an exercise.
Foreach g e G,let X, be a variable,and lett, ., = X,-... Let X; = X,,. Let

Xy, X,) = det(t,, ).

Then f'is not identically 0, as one sees by substituting 1 for X, and 0 for X, if
o # id. Since k is infinite, f'is reduced. Hence the determinant will not be 0 for
all x € K if we substitute ¢,(x) for X, in f. Hence there exists w € K such that

det(s; 'a (w)) # 0.

Suppose ay, . .., a, € k are such that
aog,(w) + -+ + a,0,(w) = 0.

Apply ;! to this relation for each i = 1,..., n. Since a; € k we get a system of
linear equations, regarding the a; as unknowns. Since the determinant of the
coefficients is # 0, it follows that

a;=0 for j=1,...,n

and hence that w is the desired element.

Remark. In terms of representations as in Chapters III and XVIII, the
normal basis theorem says that the representation of the Galois group on the
additive group of the field is the regular representation. One may also say that
K is free of dimension 1 over the group ring £[G]. Such a result may be viewed
as the first step in much more subtle investigations having to do with algebraic
number theory. Let K be a number field (finite extension of Q) and let oy be
its ring of algebraic integers, which will be defined in Chapter VII, §1. Then
one may ask for a description of o0y as a Z[G] module, which is a much more
difficult problem. For fundamental work about this problem, see A. Frohlich,
Galois Module Structures of Algebraic Integers, Ergebnisse der Math. 3 Folge
Vol. 1, Springer Verlag (1983). See also the reference [CCFT 91] given at the
end of Chapter III, §1.
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§14. INFINITE GALOIS EXTENSIONS

Although we have already given some of the basic theorems of Galois theory
already for possibly infinite extensions, the non-finiteness did not really appear
in a substantial way. We now want to discuss its role more extensively.

Let K/k be a Galois extension with group G. For each finite Galois subex-
tension F, we have the Galois groups Gy, and Ggy. Put H = Ggp.
Then H has finite index, equal to #(Gr,) = [F : k]. This just comes as a special
case of the general Galois theory. We have a canonical homomorphism

G — G/H = Gyy.

Therefore by the universal property of the inverse limit, we obtain a
homomorphism

G — limG/H,
HeF
where the limit is taken for H in the family F of Galois groups Gk as above.

Theorem 14.1. The homomorphism G — lim G/H is an isomorphism.

Proof. Firstthe kernelis trivial, because if o-is in the kernel, then o restricted
to every finite subextension of K is trivial, and so is trivial on K. Recall that an
element of the inverse limit is a family {0}, } with oy € G/H, satisfying a certain
compatibility condition. This compatibility condition means that we may define
an element o of G as follows. Let @ € K. Then « is contained in some finite
Galois extension F C K. Let H = Gal(K/F). Let 0a = oga. The compatibility
condition means that oy is independent of the choice of F. Then it is immediately
verified that ¢ is an automorphism of K over k, which maps to each oy in the
canonical map of G into G/H. Hence the map G — lim G/H is surjective, thereby
proving the theorem.

Remark. For the topological interpretation, see Chapter I, Theorem 10.1,
and Exercise 43.

Example. Let p[p™] be the union of all groups of roots of unity w[p”],
where p is a prime and n = 1, 2, ... ranges over the positive integers. Let
K = Q(i[p™]). Then K is an abelian infinite extension of Q. Let Z, be the ring
of p-adic integers, and Z} the group of units. From §3, we know that (Z/p"Z)*
is isomorphic to Gal(Q(i[p”1/Q)). These isomorphisms are compatible in the
tower of p-th roots of unity, so we obtain an isomorphism

Z; — GalQ(plp™1/Q)).
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Towers of cyclotomic fields have been extensively studied by Iwasawa. Cf.
a systematic exposition and bibliography in [La 90].

For other types of representations in a group GL,(Z,), see Serre [Se 68],
[Se 72], Shimura [Shi 71}, and Lang-Trotter [LaT 75]. One general framework
in which the representation of Galois groups on roots of unity can be seen has
to do with commutative algebraic groups, starting with elliptic curves. Specif-
ically, consider an equation

Y =4x’ - gx — g3

with g,, g; € Q and non-zero discriminant: A = g3 — 27g3 # 0. The set of
solutions together with a point at infinity is denoted by E. From complex analysis
(or by purely algebraic means), one sees that if X is an extension of Q, then the
set of solutions E(K) with x, y € K and « form a group, called the group of
rational points of E in K. One is interested in the torsion group, say E(Q?),,, of
points in the algebraic closure, or for a given prime p, in the group E(Q?)[p’]
and E(Q%)[p™]. As an abelian group, there is an isomorphism

EQIp'l = (Z/p'Z) X (Z/p"Z),

so the Galois group operates on the points of order p” via a representation in
GL,(Z/p"Z), rather than GL,(Z/p"Z) = (Z/p"Z)* in the case of roots of unity.
Passing to the inverse limit, one obtains a representation of Gal(Q?/Q) = G
in GL,(Z,). One of Serre’s theorems is that the image of Gq in GLy(Z,) is a
subgroup of finite index, equal to GL,(Z,) for all but a finite number of primes
p, if End C (E) = Z.

More generally, using freely the language of algebraic geometry, when A is
a commutative algebraic group, say with coefficients in Q, then one may consider
its group of points A(Q%),,,, and the representation of Gg in a similar way.
Developing the notions to deal with these situations leads into algebraic geometry.

Instead of considering cyclotomic extensions of a ground field, one may also
consider extensions of cyclotomic fields. The following conjecture is due to
Shafarevich. See the references at the end of §7.

Conjecture 14.2. Let ky = Q(p) be the compositum of all cyclotomic exten-
sions of Q in a given algebraic closure Q?. Let k be a finite extension of k.
Let G, = Gal(Q?*/k). Then G, is isomorphic to the completion of a free group
on countably many generators.

If G is the free group, then we recall that the completion is the inverse limit
lim G/H, taken over all normal subgroups H of finite index. Readers should
view this conjecture as being in analogy to the situation with Riemann surfaces,
as mentioned in Example 9 of §2. It would be interesting to investigate the extent
to which the conjecture remains valid if Q(p) is replaced by Q(A(Q?),,,), Where
A is an elliptic curve. For some results about free groups occurring as Galois
groups, see also Wingberg [Wi 91].



VI, §15 THE MODULAR CONNECTION 315

Bibliography
[La 90] S. LANG, Cyclotomic Fields I and II, Second Edition, Springer Verlag, 1990
(Combined edition from the first editions, 1978, 1980)

[LaT 75] S. LANG and H. TROTTER, Distribution of Frobenius Elements in GL,-Extensions
of the Rational Numbers, Springer Lecture Notes 504 (1975)

[Se 68] J.-P. SERRE, Abelian l-adic Representations and Elliptic Curves, Benjamin, 1968

[Se 72] 1.-P. SERRE, Propriétés galoisiennes des points d’ordre fini des courbes ellip-
tiques, Invent. Math. 15 (1972), pp. 259-331

[Shi 71] G. SHIMURA, Introduction to the arithmetic theory of Automorphic Functions,
Iwanami Shoten and Princeton University Press, 1971

[Wi91] K. WINGBERG, On Galois groups of p-closed algebraic number fields with
restricted ramification, I, J. reine angew. Math. 400 (1989), pp. 185-202;
and II, ibid., 416 (1991), pp. 187-194

§15. THE MODULAR CONNECTION

This final section gives a major connection between Galois theory and the
theory of modular forms, which has arisen since the 1960s.

One fundamental question is whether given a finite group G, there exists a
Galois extension K of Q whose Galois group is G. In Exercise 23 you will prove
this when G is abelian.

Already in the nineteenth century, number theorists realized the big difference
between abelian and non-abelian extensions, and started understanding abelian
extensions. Kronecker stated and gave what are today considered incomplete
arguments that every finite abelian extension of Q is contained in some extension
Q(¢), where { is a root of unity. The difficulty lay in the peculiarities of the
prime 2. The trouble was fixed by Weber at the end of the nineteenth century.
Note that the trouble with 2 has been systematic since then. It arose in Artin’s
conjecture about densities of primitive roots as mentioned in the remarks after
Theorem 9.4. It arose in the Grunwald theorem of class field theory (corrected
by Wang, cf. Artin-Tate [ArT 68], Chapter 10). It arose in Shafarevich’s proof
that given a solvable group, there exists a Galois extension of Q having that
group as Galois group, mentioned at the end of §7.

Abelian extensions of a number field F are harder to describe than over the
rationals, and the fundamental theory giving a description of such extensions is
called class field theory (see the above reference). 1 shall give one significant
example exhibiting the flavor. Let Ry be the ring of algebraic integers in F. It
can be shown that Ry is a Dedekind ring. (Cf. [La 70], Chapter I, §6, Theorem
2.) Let P be a prime ideal of Rz. Then P N Z = (p) for some prime number p.
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Furthermore, Ry/P is a finite field with ¢ elements. Let K be a finite Galois
extension of F. It will be shown in Chapter VII that there exists a prime Q of
Ry such that 0 N Rz = P. Furthermore, there exists an element

Fr, € G = Gal(K/F)
such that Frp(Q) = Q and for all @ € Rg we have
Frpa = of mod Q.

We call Frj, a Frobenius element in the Galois group G associated with Q. (See
Chapter VII, Theorem 2.9.) Furthermore, for all but a finite number of Q, two
such elements are conjugate to each other in G. We denote any of them by Frp.
If G is abelian, then there is only one element Frp in the Galois group.

Theorem 15.1. There exists a unique finite abelian extension K of F having
the following property. If P,, P, are prime ideals of Rg, then
Frp, = Frp, if and only if there is an element « of K such that aPy = P,.

In a similar but more complicated manner, one can characterize all abelian
extensions of F. This theory is known as class field theory, developed by Kro-
necker, Weber, Hilbert, Takagi, and Artin. The main statement concerning the
Frobenius automorphism as above is Artin’s Reciprocity Law. Artin-Tate’s notes
give a cohomological account of class field theory. My Algebraic Number Theory
gives an account following Artin’s first proof dating back to 1927, with later
simplifications by Artin himself. Both techniques are valuable to know.

Cyclotomic extensions should be viewed in the light of Theorem 15.1. Indeed,
let K = Q({), where { is a primitive n-th root of unity. For a prime p{n, we
have the Frobenius automorphism Fr,, whose effect on { is Fr,({) = {P. Then

Fr, = Fr,, if and only if p, = p, mod n.

To encompass both Theorem 15.1 and the cyclotomic case in one framework,
one has to formulate the result of class field theory for generalized ideal classes,
not just the ordinary ones when two ideals are equivalent if and only if they
differ multiplicatively by a non-zero field element. See my Algebraic Number
Theory for a description of these generalized ideal classes.

The non-abelian case is much more difficult. I shall indicate briefly a special
case which gives some of the flavor of what goes on. The problem is to do for
non-abelian extensions what Artin did for abelian extensions. Artin went as far
as saying that the problem was not to give proofs but to formulate what was to
be proved. The insight of Langlands and others in the sixties shows that actually
Artin was mistaken. The problem lies in both. Shimura made several computations
in this direction involving “modular forms” [Sh 66]. Langlands gave a number
of conjectures relating Galois groups with “automorphic forms”, which showed
that the answer lay in deeper theories, whose formulations, let alone their proofs,
were difficult. Great progress was made in the seventies by Serre and Deligne,
who proved a first case of Langland’s conjecture [DeS 74].
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The study of non-abelian Galois groups occurs via their linear “representa-
tions”. For instance, let [ be a prime number. We can ask whether GL,(F)), or
GL,(F)), or PGL,(F)) occurs as a Galois group over Q, and “how”. The problem
is to find natural objects on which the Galois group operates as a linear map,
such that we get in a natural way an isomorphism of this Galois group with one
of the above linear groups. The theories which indicate in which direction to
find such objects are much beyond the level of this course, and lie in the theory
of modular functions, involving both analysis and algebra, which form a back-
ground for the number theoretic applications. Again I pick a special case to give
the flavor.

Let K be a finite Galois extension of Q, with Galois group

G = Gal(K/Q).
Let
p: G — GLy(F)

be a homomorphism of G into the group of 2 X 2 matrices over the finite field
F, for some prime /. Such a homomorphism is called a representation of G.
From elementary linear algebra, if

a b
M =
(c d)
is a 2 X 2 matrix, we have its trace and determinant defined by

tr(M) =a+d and detM = ad — bc.

Thus we can take the trace and determinant tr p(o) and det p(o) for o € G.
Consider the infinite product with a variable ¢:

Alg) = q nﬂl(l — g = 2 ang”

The coefficients a, are integers, and a; = 1.

Theorem 15.2. For each prime | there exists a unique Galois extension K of
Q, with Galois group G, and an injective homomorphism

p: G — GLy(F)

having the following property. For all but a finite number of primes p, if a, is
the coefficient of qP in A(q), then we have

tr p(Fr,) = a, mod [ and det p(Fr,)) = p'! mod I.

Furthermore, for all primes | + 2, 3, 5, 7, 23, 691, the image p(G) in GLy(F,)
consists of those matrices M € GLy(F)) such that det M is an eleventh power
in F}.
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The above theorem was conjectured by Serre in 1968 [Se 68]. A proof of
the existence as in the first statement was given by Deligne [De 68]. The second
statement, describing how big the Galois group actually is in the group of matrices
GL,(F)) is due to Serre and Swinnerton-Dyer [Se 72], [SwD 73].

The point of A(q) is that if we put ¢ = €™, where z is a variable in the
upper half-plane, then A is a modular form of weight 12. For definitions and an
introduction, see the last chapter of [Se 73], [La 73], [La 76], and the following
comments. The general result behind Theorem 15.2 for modular forms of weight
= 2 was given by Deligne [De 73]. For weight 1, it is due to Deligne-Serre
[DeS 74]. We summarize the situation as follows.

Let N be a positive integer. To N we associate the subgroups

I'(N) C T,(N) C Ty(N)

b
of SL,(Z) defined by the conditions for a matrix a = (a ) € SL,(Z):
c

d

ael'(N)ifand onlyifa=d =1mod N and b = ¢ = 0 mod N;
ael';(N) if and only if a = d = 1 mod N and ¢ = 0 mod N;
a € I'y(N) if and only if ¢ = 0 mod N.

Let f be a function on the upper half-plane = {z € C, Im(z) > 0}. Let k
be an integer. For

y= (“ b) & SLy(R),
c d

define f ° [y]; (an operation on the right) by

az + b
cz+d

fo i@ = (cz + d)"*f(yz) where yz=

Let I' be a subgroup of SL,(Z) containing I'(N). We define f to be modular of
weight k on I if:

M 1. fis holomorphic on 9;
M 2. fis holomorphic at the cusps, meaning that for all @ € SL,(Z), the
function f o [a]; has a power series expansion

f° [a]k(z) — 2 aneZm'nz/N;
n=0

My 3. We have feo [y], = fforall ye I

One says that f is cuspidal if in M, 2 the power series has a zero; that is, the
power starts with n = 1.
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Suppose that f is modular of weight k on I'(N). Then f is modular on I'}(N)
if and only if f(z + 1) = f(z), or equivalently f has an expansion of the form

@) =fAq) = 2 a,q" where g =g, = ¢

This power series is called the g-expansion of f.

Suppose f has weight k on I'|(N). If y € I'y(N) and v is the above written
matrix, then f o [y], depends only on the image of d in (Z/NZ)*, and we then
denote f o [y], by f° [d],. Let

e: (Z/NZLy* — C*

be a homomorphism (also called a Dirichlet character). One says that ¢ is odd
if e(—1) = —1, and even if e(—1) = 1. One says that f is modular of type
(k, €) on ['y(N) if f has weight k on I';(V), and

foldl, = e(d)f forall de (Z/NZ)*.

It is possible to define an algebra of operators on the space of modular forms
of given type. This requires more extensive background, and I refer the reader
to [La 76] for a systematic exposition. Among all such forms, it is then possible
to distinguish some of them which are eigenvectors for this Hecke algebra, or,
as one says, eigenfunctions for this algebra. One may then state the Deligne-
Serre theorem as follows.

Let f # 0 be a modular form of type (1, €) on T'y(N), so f has weight 1. Assume
that € is odd. Assume that f is an eigenfunction of the Hecke algebra, with q-
expansion f..= 2,a,q", normalized so that a; = 1. Then there exists a unique
finite Galois extension K of Q with Galois group G, and a representation
p: G = GL,(C) (actually an injective homomorphism), such that for all
primes p X N the characteristic polynomial of p(Ft,) is

X2 — a,X + &p).

The representation p is irreducible if and only if f is cuspidal.

Note that the representation p has values in GL,(C). For extensive work of Serre
and his conjectures concerning representations of Galois groups in GL,(F) when
F is a finite field, see [Se 87]. Roughly speaking, the general philosophy started
by a conjecture of Taniyama-Shimura and the Langlands conjectures is that
everything in sight is “modular”. Theorem 15.2 and the Deligne-Serre theorem
are prototypes of results in this direction. For “modular” representations in GL,(F),
when F is a finite field, Serre’s conjectures have been proved, mostly by Ribet
[Ri 90]. As a result, following an idea of Frey, Ribet also showed how the
Taniyama-Shimura conjecture implies Fermat’s last theorem [Ri 90b]. Note that
Serre’s conjectures that certain representations in GL,(F) are modular imply the
Taniyama-Shimura conjecture.



320 GALOIS THEORY VI, Ex

Bibliography

[ArT 68] E. ArTIN and J. TATE, Class Field Theory, Benjamin-Addison-Wesley, 1968
(reprinted by Addison-Wesley, 1991)

[De 68] P. DELIGNE, Formes modulaires et représentations /-adiques, Séminaire Bour-
baki 1968~1969, exp. No. 355

[De 73] P. DELIGNE, Formes modulaires et représentations de GL(2), Springer Lecture
Notes 349 (1973), pp. 55-105

[DeS 74] P. DELIGNE and J. P. SERRE, Formes modulaires de poids 1, Ann. Sci. ENS
7 (1974), pp. 507-530

[La 70] S. LANG, Algebraic Number Theory, Springer Verlag, reprinted from Addison-
Wesley (1970)

[La 73] S. LANG, Elliptic functions, Springer Verlag, 1973

[La 76] S. LANG, Introduction to modular forms, Springer Verlag, 1976

[Ri 90a] K. RiBET, On modular representations of Gal(Q/Q) arising from modular
forms, Invent. Math. 100 (1990), pp. 431-476

[Ri 90b] K. RIBET, From the Taniyama-Shimura conjecture to Fermat’s last theorem,
Annales de la Fac. des Sci. Toulouse (1990), pp. 116-139

[Se 68] J.-P. SERRE, Une interprétation des congruences relatives a la fonction de
Ramanujan, Séminaire Delange-Pisot-Poitou, 1967-1968

[Se 72] J.-P. SERRE, Congruences et formes modulaires (d’aprés Swinnerton-Dyer),
Séminaire Bourbaki, 1971-1972

[Se 73] J.-P. SERRE, A course in arithmetic, Springer Verlag, 1973

[Se 87] J.-P. SERRE, Sur les représentations modulaires de degré 2 de Gal(Q/Q),
Duke Math. J. 54 (1987), pp. 179-230

[Shi 66] G. SHIMURA, A reciprocity law in non-solvable extensions, J. reine angew.
Math. 221 (1966), pp. 209-220

[Shi 711  G. SHIMURA, Introduction to the arithmetic theory of automorphic functions,
Iwanami Shoten and Princeton University Press, 1971

[SwD 73] H. P. SWINNERTON-DYER, On /-adic representations and congruences for
coefficients of modular forms, (Antwerp conference) Springer Lecture Notes
350 (1973)

EXERCISES

1. What is the Galois group of the following polynomials?
(@ X — X —1overQ.
(b) X3 — 10 over Q.
(c) X3 — 10 over Q(\/E).
(d) X3 — 10 over Q(\/-3).
(e) X — X — 1over Q(\/—23).

(f) X* —5over Q,Q(/5), Q/ ~5), Q).
(g) X* — a where ais any integer # 0, # + 1 and is square free. Over Q.
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(h) X3 — a where a is any square-free integer = 2. Over Q.
(i) X* + 2 over Q, Q(i).
() (X2 = 2)(X? = 3)(X?* - 5)(X? ~ T)over Q.
(k) Let py, ..., p, be distinct prime numbers. What is the Galois group of
(X?=p)--(X* =p)overQ?
) (X3 — 2)(X® = 3)(X? — 2) over Q(/—3).
(m) X" — t, where t is transcendental over the complex numbers C and n is a
positive integer. Over C(t).
(n) X* — t, where t is as before. Over R(¢).

2. Find the Galois groups over Q of the following polynomials.

@@ X+ X +1 (b) X3 - X +1 (@ X3+ X2 —2X — 1
(© X®+2X +1 (d) X3 —2X + 1
€ X*—X -1 ) X3— 12X + 8

3. Let k = C(t) be the field of rational functions in one variable. Find the Galois group
over k of the following polynomials:

(@ X>+ X +1t (b) X3~ X +1
© X*+1tX +1 (d) X3 — 22X + ¢
e) X3 —-X —1 ) X3 +2X -3

4. Let k be a field of characteristic # 2. Let ¢ € k, ¢ & k% Let F = k(\/z). Let
a =a+ b Ve with a, b € k and not both a, b = 0. Let E = F(Va). Prove that
the following conditions are equivalent.

(1) E is Galois over k.

(2) E = F(Va'), where ' = a — bVe.

(3) Either aa’ = a*> — cb? € k% or caa’ € k2.
Show that when these conditions are satisfied, then E is cyclic over k of degree 4 if
and only if caa’' € k2.

5. Let k be a field of characteristic # 2, 3. Let f(X), g(X) = X2 — ¢ be irreducible
polynomials over k, of degree 3 and 2 respectively. Let D be the discriminant of f.

Assume that
[k(D'?) : k] =2 and k(DV?) # k(c'?).

Let a be a root of fand B a root of g in an algebraic closure. Prove:
(a) The splitting field of fg over k has degree 12.
(b) Let y = a + B. Then [k(y) : k] = 6.

6. (a) Let K be cyclic over k of degree 4, and of characteristic # 2. Let Gg, = (0).
Let E be the unique subfield of K of degree 2 over k. Since [K : E] = 2, there
exists @« € K such that > = y € E and K = E(a). Prove that there exists
z € E such that

zoz = =1, oa=za, 2= ay/y.

(b) Conversely, let E be a quadratic extension of k and let G, = (7). Let z € E
be an element such that zrz = —1. Prove that there exists y € E such that
22 = 1y/7y. Then E = k(). Let o = v, and let K = k(a). Show that K is
Galois, cyclic of degree 4 over k. Let o be an extension of 7 to K. Show that
o is an automorphism of K which generates G, satisfying o’a = —a and
oa = *za. Replacing z by —z originally if necessary, one can then have
oa = za.
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7. (a) Let K = Q(Va) where a € Z, a < 0. Show that K cannot be embedded in a
cyclic extension whose degree over Q is divisible by 4.
(b) Let f(X) = X* + 30X? + 45. Let a be a root of F. Prove that Q(a) is cyclic of
degree 4 over Q.
(c) Let f(X) = X*+4X?+2. Prove that f is irreducible over Q and that the
Galois group is cyclic.

8. Let f(X) = X* 4+ aX? + b be an irreducible polynomial over Q, with roots + a, + §,
and splitting field K.

(a) Show that Gal(K/Q) is isomorphic to a subgroup of Dg (the non-abelian group
of order 8 other than the quaternion group), and thus is isomorphic to one of the
following:

(i) Z/AZ (i) Z/2Z x Z/2Z  (iii) Dg.
(b) Show that the first case happens if and only if
a_B
 a € Q.
Case (ii) happens if and only if a8 € Q or a?> — B? € Q. Case (iii) happens
otherwise. (Actually, in (ii), the case a® — 82 € Q cannot occur. It corresponds
to a subgroup of Dg = S, which is isomorphic to Z/2Z x Z/2Z, but is not
transitive on {1, 2, 3,4}).
(c) Find the splitting field X in C of the polynomial

X* —4X? - 1.

Determine the Galois group of this splitting field over Q, and describe fully
the lattices of subfields and of subgroups of the Galois group.

9. Let K be a finite separable extension of a field k, of prime degree p. Let € K be
such that K = k(6), and let 8,, ..., 6, be the conjugates of 8 over k in some algebraic
closure. Let 6 = 0,. If 6, € k(6), show that K is Galois and in fact cyclic over k.

10. Let f(X) € Q[X] be a polynomial of degree n, and let K be a splitting field of fover Q.

Suppose that Gal(K/Q) is the symmetric group S, with n > 2.
(a) Show that fis irreducible over Q.
(b) If o is a root of f, show that the only automorphism of Q(«) is the identity.
(c) If n = 4, show that " ¢ Q.

11. A polynomial f(X) is said to be reciprocal if whenever « is a root, then 1/x is also a
root. We suppose that f has coefficients in a subfield £k < R = C. If f is irreducible
over k, and has a nonreal root of absolute value 1, show that f is reciprocal of even
degree.

12. What is the Galois group over the rationals of X° — 4X + 2?

13. What is the Galois group over the rationals of the following polynomials:
@ X*+2X2+ X +3
b) X*+3Xx3-3x-2
(©) X® 4+ 22X5 —9X* 4+ 12X3 — 37X2 — 29X — 15
[Hint: Reduce mod 2, 3, 5.]
14. Prove that given a symmetric group S,, there exists a polynomial f(X) € Z[ X] with
leading coefficient 1 whose Galois group over Q is S,. [Hint: Reducing mod 2, 3, 5,
show that there exists a polynomial whose reductions are such that the Galois group
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15.

16.

contains enough cycles to generate S,. Use the Chinese remainder theorem, also to
be able to apply Eisenstein’s criterion.]

Let K/k be a Galois extension, and let F be an intermediate field between k and K.
Let H be the subgroup of Gal(K/k) mapping F into itself. Show that H is the normal-
izer of Gal(K/F) in Gal(K/k).

Let K/k be a finite Galois extension with group G. Let a € K be such that
{oa},cq is a normal basis. For each subset S of G let S(a) = > cesoa. Let H be a
subgroup of G and let F be the fixed field of H. Show that there exists a basis of F
over k consisting of elements of the form S(a).

Cyclotomic fields

17.

18.

19.

20.

(a) Let k be a field of characteristic ¥2n, for some odd integer n = 1, and let { be
a primitive n-th root of unity, in k. Show that k also contains a primitive 2n-th
root of unity.

(b) Let k be a finite extension of the rationals. Show that there is only a finite number
of roots of unity in k.

(a) Determine which roots of unity lie in the following fields: Q(i), Q(V-2),
Q(V2), QV-3), Q(V3), QV-5).

(b) For which integers m does a primitive m-th root of unity have degree 2 over Q?

Let { be a primitive n-th root of unity. Let K = Q({).
(@) If n = p” (r = 1) is a prime power, show that Ng,q(1 — {) = p.
(b) If n is composite (divisible by at least two primes) then Ng,o(1 — ) = 1.

Let f(X) € Z[X] be a non-constant polynomial with integer coefficients. Show that
the values f(a) with a € Z* are divisible by infinitely many primes.

Note: This is trivial. A much deeper question is whether there are infinitely many
a such that f(a) is prime. There are three necessary conditions:

The leading coefficient of f is positive.

The polynomial is irreducible.

The set of values f(Z*) has no common divisor > 1.

A conjecture of Bouniakowski [Bo 1854] states that these conditions are sufficient.
The conjecture was rediscovered later and generalized to several polynomials by
Schinzel [Sch 58]. A special case is the conjecture that X2 + 1 represents infinitely
many primes. For a discussion of the general conjecture and a quantitative version
giving a conjectured asymptotic estimate, see Bateman and Horn [BaH 62]. Also see
the comments in [HaR 74]. More precisely, letf,, . . ., f, be polynomials with integer
coefficients satisfying the first two conditions (positive leading coefficient, irre-
ducible). Let

f=hH—F
be their product, and assume that f satisfies the third condition. Define:
mH(x) = number of positive integers n = x such that fi(n), . . ., f,(n) are all primes.

(We ignore the finite number of values of n for which some f(n) is negative.) The
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21.

22.

23,

Bateman-Horn conjecture is that

1
(log 1)"

@) ~ (dy -+ d)IC(f) f ar,
0

where
-0 )

the product being taken over all primes p, and Ny(p) is the number of solutions of
the congruence

f(n) =0 mod p.

Bateman and Horn show that the product converges absolutely. When r = 1 and
f(n) = an + b with a, b relatively prime integers, a > 0, then one gets Dirichlet’s
theorem that there are infinitely many primes in an arithmetic progression, together
with the Dirichlet density of such primes.

[BaH 62] P.T.BATEMAN and R. HORN, A heuristic asymptotic formula concerning
the distribution of prime numbers, Math. Comp. 16 (1962) pp. 363-367

[Bo 1854] V. BOUNIAKOWSKY, Sur les diviseurs numériques invariables des fonc-
tions rationnelles entiéres, Mémoires sc. math. et phys. T. VI (1854-
1855) pp. 307-329

[HaR 74] H. HaLBERsTAM and H.-E. RICHERT, Sieve methods, Academic Press,
1974

[Sch 58] A. ScHINZEL and W. SIERPINSKI, Sur certaines hypothéses concernant
les nombres premiers, Acta Arith. 4 (1958) pp. 185-208

(a) Let a be a non-zero integer, p a prime, n a positive integer, and p } n. Prove
that p | ®@,(a) if and only if a has period n in (Z/pZ)*.

(b) Again assume p t n Prove that p | ®,(a) for some a € Z if and only if p = 1
mod n. Deduce from this that there are infinitely many primes = 1 mod n, a
special case of Dirichlet’s theorem for the existence of primes in an arithmetic
progression.

Let F = F, be the prime field of characteristic p. Let K be the field obtained from
F by adjoining all primitive /-th roots of unity, for all prime numbers ! # p. Prove
that K is algebraically closed. [Hint: Show that if g is a prime number, and r an
integer = 1, there exists a prime / such that the period of p mod [ is ¢", by using
the following old trick of Van der Waerden: Let / be a prime dividing the number

v ] -1 r—t -
b:ﬁ—mx_—lﬂp" —D) g - )T+ g
If I does not divide p* ' — 1, we are done. Otherwise, [ = g. But in that case ¢*> does

not divide b, and hence there exists a prime / # g such that ] divides b. Then the degree
of F(¢)) over F is ¢, so K contains subfields of arbitrary degree over F.]

(a) Let G be a finite abelian group. Prove that there exists an abelian extension of
Q whose Galois group is G.
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24.

25.

26.

27.

28.

29.

30.

31.

32.
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(b) Let k be a finite extension of Q, and G # {1} a finite abelian group. Prove that
there exist infinitely many abelian extensions of k whose Galois group is G.

Prove that there are infinitely many non-zero relatively prime integers a, b such that
—4a® — 27b% is a square in Z.

Let k be a field such that every finite extension is cyclic. Show that there exists an
automorphism o of k2 over k such that k is the fixed field of o.

Let Q? be a fixed algebraic closure of Q. Let E be a maximal subfield of Q* not
containing V2 (such a subfield exists by Zorn’s lemma). Show that every finite
extension of E is cyclic. (Your proof should work taking any algebraic irrational
number instead of \/5.)

Let k be a field, k? an algebraic closure, and o an automorphism of k* leaving k
fixed. Let F be the fixed field of o. Show that every finite extension of F is cyclic.
(The above two problems are examples of Artin, showing how to dig holes in an
algebraically closed field.)

Let E be an algebraic extension of k such that every non-constant polynomial f(X)
in k[ X has at least one root in E. Prove that E is algebraically closed. [Hint: Discuss
the separable and purely inseparable cases separately, and use the primitive element
theorem. ]

(a) Let K be a cyclic extension of a field F, with Galois group G generated by 0. Assume
that the characteristic is p, and that [K:F] = p™~! for some integer m = 2.
Let B be an element of K such that Tr¥(f) = 1. Show that there exists an element
o in K such that

ou —o = pP—p

(b) Prove that the polynomial X? — X — a is irreducible in K[X].

(c) If 8 is a root of this polynomial, prove that F(6) is a Galois, cyclic extension of
degree p™ of F, and that its Galois group is generated by an extension ¢* of o
such that

a*(©0) = 0 + B.

Let A be an abelian group and let G be a finite cyclic group operating on 4 [by means
of a homomorphism G — Aut(A4)]. Let o be a generator of G. We define the trace

Tre = Tr on A4 by Tr(x) = Y tx. Let Ar, denote the kernel of the trace, and let
teG

(1 — 0)A denote the subgroup of A consisting of all elements of type y — oy. Show that
HY(G, A) = At,/(1 — 0)A.
Let F be a finite field and K a finite extension of F. Show that the norm N¥ and the
trace Tr¥ are surjective (as maps from K into F).
Let E be a finite separable extension of k, of degree n. Let W = (w,, ..., w,) be elements
of E. Letgy,...,a, be the distinct embeddings of E in k? over k. Define the dis-
criminant of W to be
Dgy(W) = det(aw)).

Prove:

(@) IfV=(v,,...,v,) is another set of elements of E and C = (c;) is a matrix

of elements of k such that w; = zc,»jvj, then

Dg, (W) = det(C)?Dgy (V).
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(b) The discriminant is an element of k.
(c) Let E = k(«) and let f(X) = Irr(e, k, X). Let a, ..., a, be the roots of f and
say @ = a,. Then

S =@~ a)
i=2

Show that
Dey(l, o, ..., 0" ) = (= 1) D2NE f (o).

(d) Let the notation be as in (a). Show that det(Tr(w;w;)) = (det(o,w j))z. [Hint:
Let A be the matrix (g;w;). Show that ‘44 is the matrix (Tr(w;w;)).]

Rational functions

33, Let K = C(x) where x is transcendental over C, and let { be a primitive cube root of
unity in C. Let ¢ be the automorphism of K over C such that ox = {x. Let 7 be the
automorphism of K over C such that tx = x~!. Show that

1

o’=1=7 and 10=0"'7

Show that the group of automorphisms G generated by o and 7 has order 6 and the
subfield F of K fixed by G is the field C(y) where y = x> + x73,

34. Give an example of a field K which is of degree 2 over two distinct subfields E and F
respectively, but such that K is not algebraic over E n F.
35. Let k be a field and X a variable over k. Let

f(X)
X) =22~
o(X) 4(X)

be a rational function in k(X), expressed as a quotient of two polynomials f, g which
are relatively prime. Define the degree of ¢ to be max(deg f, deg g). Let ¥ = ¢(X).
(a) Show that the degree of ¢ is equal to the degree of the field extension k(X) over k(Y)
(assuming Y ¢ k). (b) Show that every automorphism of k(X) over k can be represented
by a rational function ¢ of degree 1, and is therefore induced by a map

aX +b
—
cX +d

with a, b, c,dek and ad — bc # 0. (c) Let G be the group of automorphisms of k(X)
over k. Show that G is generated by the following automorphisms:
,:X—~X+b o, X—aX (@a#0), X—Xx!

with a, bek.

36. Let k be a finite field with g elements. Let K = k(X) be the rational field in one variable.
Let G be the group of automorphisms of K obtained by the mappings

aX +b
—
cX +d
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with a, b, ¢, d in k and ad — bc # 0. Prove the following statements:
(a) The order of G is ¢ — q.
(b) The fixed field of G is equal to k(Y) where

(X7 — x)1*!

YzaijﬁﬁT

(c) Let H, be the subgroup of G consisting of the mappings X — aX + b with
a # 0. The fixed field of H, is k(T) where T = (X4 — X)*~ %

(d) Let H, be the subgroup of H, consisting of the mappings X — X + b with
bek. The fixed field of H, is equal to k(Z) where Z = X7 — X.

Some aspects of Kummer theory

37. Let k be a field of characteristic 0. Assume that for each finite extension E of k, the
index (E* : E*") is finite for every positive integer n. Show that for each positive integer
n, there exists only a finite number of abelian extensions of k of degree n.

38. Let a # 0, # + 1 be a square-free integer. For each prime number p, let K, be
the splitting field of the polynomial X? — a over Q. Show that [K,: Q] = p(p — 1).
For each square-free integer m > 0, let

K, = nKp

plm

be the compositum of all fields K, for p|m. Let d,, = [K,,: Q] be the degree of K,,
over Q. Show that if m is odd then d,, = [] d,, and if m is even, m = 2n then d,, = d,

plm
or 2d, according as Va is or is not in the field of m-th roots of unity Q(Z,,).

39. Let K be a field of characteristic O for simplicity. Let I be a finitely generated subgroup
of K*. Let N be an odd positive integer. Assume that for each prime p| N we have

r=r"nK,

and also that Gal(K(py)/K) ~ Z(N)*. Prove the following.
(@) T/TN = T/(T n K*N) = TK*N/K*N,
(b) Let Ky = K(uy). Then

Fn KN =TV

[Hint: If these two groups are not equal, then for some prime p| N there exists
an element a € I such that

a=>b" with beKy but b¢K.

In other words, a is not a p-th power in K but becomes a p-th power in K. The
equation x? — g is irreducible over K. Show that b has degree p over K(n,),
and that K(u,, a'/?) is not abelian over K, so a'’” has degree p over K(p,).
Finish the proof yourself.]
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(¢) Conclude that the natural Kummer map
I/ - Hom(HK(N), )

is an isomorphism.

(d) Let GN) = Gal(K(I''** ny)/K). Then the commutator subgroup of G{(N)
is H{N), and in particular Gal(Ky/K) is the maximal abelian quotient of
G(N).

40. Let K be a field and p a prime number not equal to the characteristic of K. Let I be a
finitely generated subgroup of K*, and assume that I is equal to its own p-division
group in K, thatisif ze K and z? €T, then ze . If p is odd, assume that p, < K, and
if p = 2, assume that p, = K. Let

(C:17) = .
Show that I''/? is its own p-division group in K(I''/?), and
[K('P7): K] = pme*

for all positive integers m.

41. Relative invariants (Sato). Let k be a field and K an extension of k. Let G be a group
of automorphisms of K over k, and assume that k is the fixed field of G. (We do not
assume that K is algebraic over k.) By a relative invariant of G in K we shall mean an
element Pe K, P # 0, such that for each o€ G there exists an element (¢) € k for
which P’ = y(¢)P. Since ¢ is an automorphism, we have y(c) € k*. We say that the
map y : G — k* belongs to P, and call it a character. Prove the following statements:

(a) The map y above is a homomorphism.

(b) If the same character y belongs to relative invariants P and Q then there
exists ¢ € k* such that P = ¢Q.

(c) The relative invariants form a multiplicative group, which we denote by I.

Elements Py, ..., P, of I are called multiplicatively independent mod k* if
their images in the factor group I/k* are multiplicatively independent, i.. if
given integers v,, ..., v,, such that

Py - Pim = cek*,

thenv, =---=v, =0.

(d) If P, ..., P, are multiplicatively independent mod k* prove that they are
algebraically independent over k. [Hint: Use Artin’s theorem on characters.]

(e) Assume that K = k(X 4, ..., X,) is the quotient field of the polynomial ring
k[X,,...,X,] = k[X], and assume that G induces an automorphism of the
polynomial ring. Prove: If F,(X)and F,(X) are relative invariant polynomials,
then their g.cd. is relative invariant. If P(X) = F(X)/F,(X) is a relative
invariant, and is the quotient of two relatively prime polynomials, then F,(X)
and F,(X) are relative invariants. Prove that the relative invariant poly-
nomials generate I/k*. Let S be the set of relative invariant polynomials which
cannot be factored into a product of two relative invariant polynomials of
degrees = 1. Show that the elements of S/k* are multiplicatively independent,
and hence that I/k* is a free abelian group. [If you know about transcendence
degree, then using (d) you can conclude that this group is finitely generated.]
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42.

43,

44,

45.

Let f(z) be a rational function with coefficients in a finite extension of the rationals.
Assume that there are infinitely many roots of unity { such that f({) is a root of unity.
Show that there exists an integer n such that f(z) = cz" for some constant ¢ (which is in
fact a root of unity).

This exercise can be generalized as follows: Let I'y be a finitely generated multi-
plicative group of complex numbers. Let I' be the group of all complex numbers y
such that y™ lies in Iy for some integer m # 0. Let f(z) be a rational function with
complex coefficients such that there exist infinitely many y e I" for which f(y) liesin I".
Then again, f(z) = cz" for some ¢ and n. (Cf. Fundamentals of Diophantine Geometry.)

Let K/k be a Galois extension. We define the Krull topology on the group
G(K/k) = G by defining a base for open sets to consist of all sets i where o € G
and H = G(K/F) for some finite extension F of k contained in K.
(a) Show that if one takes only those sets oH for which F is finite Galois over
k then one obtains another base for the same topology.
(b) The projective limit lim G/H is embedded in the direct product

lim G/H— [1 G6/H.
T H

Give the direct product the product topology. By Tychonoff’s theorem in
elementary point set topology, the direct product is compact because it is a
direct product of finite groups, which are compact (and of course also discrete).
Show that the inverse limit lim G/H is closed in the product, and is therefore
compact.

(c) Conclude that G(K/k) is compact.

(d) Show that every closed subgroup of finite index in G(K/k) is open.

(e) Show that the closed subgroups of G(K/k) are precisely those subgroups
which are of the form G(K/F) for some extension F of k contained in K.

(f) Let H be an arbitrary subgroup of G and let F be the fixed field of H. Show
that G(K/F) is the closure of H in G.

Let k be a field such that every finite extension is cyclic, and having one extension of
degree n for each integer n. Show that the Galois group G = G(k*/k) is the inverse limit
lim Z/mZ, as mZ ranges over all ideals of Z, ordered by inclusion. Show that this limit
is isomorphic to the direct product of the limits

[T1im z/prz = [1z,

p n—o® P
taken over all prime numbers p, in other words, it is isomorphic to the product of all
p-adic integers.

Let k be a perfect field and k? its algebraic closure. Let o € G(k?/k) be an element
of infinite order, and suppose k is the fixed field of o. For each prime p, let K, be
the composite of all cyclic extensions of k of degree a power of p.
(a) Prove that k2 is the composite of all extensions K,
(b) Prove that either K, = k, or K, is infinite cyclic over k. In other words, K,
cannot be finite cyclic over k and # k.
(c) Suppose k* = K, for some prime p, so k* is an infinite cyclic tower of
p-extensions. Let u be a p-adic unit, u € Z} such that u does not represent
a rational number. Define o, and prove that o, o* are linearly independent
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over Z, i.e. the group generated by o and ¢* is free abelian of rank 2. In
particular {a} and {0, o*} have the same fixed field k.

Witt vectors

46. Let x;, x,, . .. be a sequence of algebraically independent elements over the integers
Z. For each integer n = 1 define

x™ =Y dxj.

din

Show that x, can be expressed in terms of x for d|n, with rational coefficients.
Using vector notation, we call (x,, x,, ...) the Witt components of the vector x,
and call (x'), x!?), .. ) its ghost components. We call x a Witt vector.
Define the power series

L0 =TT = x.1.

n21

Show that

d
—to logf(t) = Y x"r".

nz1

d . . — .
[By 7 log f(t) we mean f'(¢)/f (t) if f (t) is a power series, and the derivative f'(z) is taken
formally.]

If x, y are two Witt vectors, define their sum and product componentwise with
respect to the ghost components, i.¢.

(x + )" =x" + "
What is (x + y),? Well, show that
£t =TT+ 6+ yem = £y

Hence (x + y), is a polynomial with integer coefficients in x,, y;, ..., X,, y,. Alsoshow
that

Sy =TT (1= xpiaypiermyiem

dezl

where m is the least common multiple of d, e and d, e range over all integers = 1. Thus

(xy), is also a polynomial in x,, y, ..., x,, y, with integer coefficients. The above
arguments are due to Witt (oral communication) and differ from those of his original
paper.

If 4 is a commutative ring, then taking a homomorphic image of the polynomial
ring over Z into A, we see that we can define addition and multiplication of Witt
vectors with components in A4, and that these Witt vectors form a ring W(4). Show
that W is a functor, i.e. that any ring homomorphism ¢ of 4 into a commutative ring A’
induces a homomorphism W(g): W(A4) - W(A).
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47.

48.

49.

50.

Let p be a prime number, and consider the projection of W(A) on vectors whose
components are indexed by a power of p. Now use the log to the base p to index
these components, so that we write x, instead of x,». For instance, x, now denotes
what was x; previously. For a Witt vector x = (xy, x, ..., x,, ...) define

Vx = (0, xg, Xy,...) and Fx = (x§, x%,...).
Thus V is a shifting operator. We have Vo F = Fo V. Show that
Vx) =px™ 1 and x™ = (Fx)"~ Y 4 p"x,.
Also from the definition, we have
xW = xp" + pxp" 4+ -+ pra,.

Let k be a field of characteristic p, and consider W (k). Then V is an additive endomorph-

ismof W(k), and F is a ring homomorphism of W (k) into itself. Furthermore, if x € W (k)
then

px = VFx.

If x, ye W(k), then (Vix)V'y) = VI*i(F?ix . FP'y). For aek denote by {a} the Witt
vector a, 0, 0, ...). Then we can write symbolically

x =Y Vix}
i=0
Show that if x € W(k) and x, # 0 then x is a unit in W(k). Hint: One has

I—x{xo'} =Vy

and then

X} LV = (1= V) Y () = 1.
0 0

Let nbe an integer = 1 and p a prime number again. Let k be a field of characteristic p.
Let W,(k) be the ring of truncated Witt vectors (xq, ..., x,_,) with components in k.
We view W,(k) as an additive group. If x € W,(k), define g(x) = Fx — x. Then p isa
homomorphism. If X is a Galois extension of k, and o € G(K/k), and x € W,(K) we
can define ox to have component (gx,,...,0x,_,). Prove the analogue of Hilbert’s
Theorem 90 for Witt vectors, and prove that the first cohomology group is trivial. (One

takes a vector whose trace is not 0, and finds a coboundary the same way as in the proof
of Theorem 10.1).

If x € W, (k), show that there exists £ € W,(k) such that (&) = x. Do this inductively,
solving first for the first component, and then showing that a vector (0, «y, ..., a,_,) is
in the image of g if and only if («,, .. ., &, ) is in the image of g. Prove inductively
that if £, £’ e W, (k') for some extension k' of k and if p& = @& then ¢ — &' is a vector
with components in the prime field. Hence the solutions of p¢ = x for given x € W,(k)
all differ by the vectors with components in the prime field, and there are p" such
vectors. We define

k(é) = k(éo, R én— l)a
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or symbolically,
k(g™ 'x).

Prove that it is a Galois extension of k, and show that the cyclic extensions of k, of
degree p", are precisely those of type k(g ~'x) with a vector x such that x, ¢ pk.

51. Develop the Kummer theory for abelian extensions of k of exponent p” by using W,(k).
In other words, show that there is a bijection between subgroups B of W, (k) containing
@ W,(k) and abelian extensions as above, given by

B— Ky

where Kz = k(g™ 'B). All of this is due to Witt, cf. the references at the end of §8,
especially [Wi 37]. The proofs are the same, mutatis mutandis, as those given for
the Kummer theory in the text.

Further Progress and directions

Major progress was made in the 90s concerning some problems mentioned in the
chapter. Foremost was Wiles’s proof of enough of the Shimura-Taniyama conjecture to
imply Fermat’s Last Theorem [Wil 95], [TaW 95].

[TaW 95] R. TayrLor and A. WiLEs, Ring-theoretic properties or certain Hecke alge-
bras, Annals of Math. 141 (1995) pp. 553-572

[Wil 95] A. WiLes, Modular elliptic curves and Fermat’s last theorem, Annals. of
Math. 141 (1995) pp. 443-551

Then a proof of the complete Shimura-Taniyama conjecture was given in [BrCDT 01].

[BrCDT 01] C. BreuiL, B. ConraD, F. DiaMonND, R. TAYLOR, On the modularity of el-
liptic curves over Q: Wild 3-adic exercises, J. Amer. Math. Soc. 14 (2001)
pp. 843-839

In a quite different direction, Neukirch started the characterization of number fields
by their absolute Galois groups [Ne 68], [Ne 69a], [Ne 69b], and proved it for Galois
extensions of Q. His results were extended and his subsequent conjectures were proved
by Ikeda and Uchida [Ik 77], [Uch 77], [Uch 79], [Uch 81]. These results were extended
to finitely generated extensions of Q (function fields) by Pop [Pop 94], who has a more
extensive bibliography on these and related questions of algebraic geometry. For these
references, see the bibliography at the end of the book.



CHAPTER VI I

Extensions of Rings

It is not always desirable to deal only with field extensions. Sometimes one
wants to obtain a field extension by reducing a ring extension modulo a prime
ideal. This procedure occurs in several contexts, and so we are led to give the
basic theory of Galois automorphisms over rings, looking especially at how the
Galois automorphisms operate on prime ideals or the residue class fields. The
two examples given after Theorem 2.9 show the importance of working over
rings, to get families of extensions in two very different contexts.

Throughout this chapter, A, B, C will denote commutative rings.

§1. INTEGRAL RING EXTENSIONS

In Chapters V and VI we have studied algebraic extensions of fields. For a
number of reasons, it is desirable to study algebraic extensions of rings.
For instance, given a polynomial with integer coefficients, say X°> — X — 1,
one can reduce this polynomial mod p for any prime p, and thus get a poly-
nomial with coefficients in a finite field. As another example, consider the
polynomial

X"+ 5, X" V4 + 5

where s,_;,..., 5, are algebraically independent over a field k. This poly-

nomial has coefficients in k[s,, ..., s,_;] and by substituting elements of k for
Sg» ..., S,~1 one obtains a polynomial with coefficients in k. One can then get
333
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information about polynomials by taking a homomorphism of the ring in
which they have their coefficients. This chapter is devoted to a brief description
of the basic facts concerning polynomials over rings.

Let M be an A-module. We say that M is faithful if, whenever a € A is such
that aM = 0, then a = 0. We note that A is a faithful module over itself since
A contains a unit element. Furthermore, if A # 0, then a faithful module over
A cannot be the 0-module.

Let A be a subring of B. Let & € B. The following conditions are equivalent:

INT 1. The element « is a root of a polynomial
X"+ ay X"+ + ag

with coefficients g; € A, and degree n = 1. (The essential thing here
is that the leading coefficient is equal to 1.)

INT 2. The subring Af«] is a finitely generated A-module.

INT 3. There exists a faithful module over A[«] which is a finitely gener-
ated A-module.

We prove the equivalence. Assume INT 1. Let g(X) be a polynomial
in A[X] of degree = 1 with leading coefficient 1 such that g(a) = 0. If
f(X) e A[X] then

f(X) = q(X)g(X) + r(X)

with ¢, re A[X] and deg r < deg g. Hence f(x) = r(2), and we see that if
degg = n,then 1, o, ..., " ! are generators of A[«] as a module over A.

An equation g(X) = 0 with g as above, such that g(a) = 0 is called an
integral equation for a over A.

Assume INT 2. We let the module be A[«] itself.

Assume INT 3, and let M be the faithful module over A[o] which is finitely
generated over A, say by elements w, ..., w,. Since aM < M there exist ele-
ments a;; € A such that

oWy = apwy + -+ aw,

aw, = d, W, + -+ AWy -

Transposing aw, ..., aw, to the right-hand side of these equations, we con-
clude that the determinant

ox— apy

o~ dy, —aq;

—da.:

nn
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is such that dM = 0. (This will be proved in the chapter when we deal with
determinants.) Since M is faithful, we must have d = 0. Hence « is a root of
the polynomial
det(X9;; — a;)),
which gives an integral equation for o over A.
An element « satisfying the three conditions INT 1, 2, 3 is called integral
over A.

Proposition 1.1. Let A be an entire ring and K its quotient field. Let o be
algebraic over K. Then there exists an element ¢ # 0 in A such that ca is
integral over A.

Proof. There exists an equation
a0 + a,_ "+ 4+ a,=0
with a; € 4 and a, # 0. Multiply it by a"~'. Then
(o) + -+ agai ' =0

is an integral equation for a,x over A. This proves the proposition.

Let A C B be subrings of a commutative ring C, and let & € C. If a is integral
over A then « is a fortiori integral over B. Thus integrality is preserved under
lifting. In particular, « is integral over any ring which is intermediate between
A and B.

Let B contain A as a subring. We shall say that B is integral over A if every
element of B is integral over A.

Proposition 1.2.  If Bis integral over A and finitely generated as an A-algebra,
then B is finitely generated as an A-module.

Proof. We may prove this by induction on the number of ring generators,
and thus we may assume that B = A[«] for some element « integral over A, by
considering a tower

A< Aloy] = Aley, 03] = - < Aloy, ..., 2,] = B.

But we have already seen that our assertion is true in that case, this being part
of the definition of integrality.

Just as we did for extension fields, one may define a class C of extension
rings A < B to be distinguished if it satisfies the analogous properties, namely:

(1) Let A = B = C be a tower of rings. The extension 4 = C is in € if
and onlyif A c Bisin C and Bc Cisin C.

(2) If A < Bisin €, if C is any extension ring of 4, and if B, C are both
subrings of some ring, then C < B[C] is in €. (We note that
B[C] = C[B] is the smallest ring containing both B and C.)
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As with fields, we find formally as a consequence of (1) and (2) that (3) holds,
namely:

3)If AcBand 4 = C are in C, and B, C are subrings of some ring,
then 4 = B[C]isin €.

Proposition 1.3.  Integral ring extensions form a distinguished class.

Proof. Let A C B C C be a tower of rings. If C is integral over A, then it
is clear that B is integral over 4 and C is integral over B. Conversely, assume
that each step in the tower is integral. Let o € C. Then « satisfies an integral
equation

a" + b, "+ 4+ by=0

with b;e B. Let B, = A[by,...,b,_,]. Then B, is a finitely generated A-
module by Proposition 1.2, and is obviously faithful. Then B,[«] is finite over
B,, hence over A, and hence « is integral over A. Hence C is integral over A.
Finally let B, C be extension rings of A and assume B integral over A. Assume
that B, C are subrings of some ring. Then C[B] is generated by elements of
B over C, and each element of B is integral over C. That C[B] is integral over
C will follow immediately from our next proposition.

Proposition 1.4. Let A be a subring of C. Then the elements of C which are
integral over A form a subring of C.

Proof. Let a, f e C be integral over A. Let M = A[a] and N = A[B].
Then MN contains 1, and is therefore faithful as an 4-module. Furthermore,
oM < M and BN = N. Hence MN is mapped into itself by multiplication
with « + B and af. Furthermore MN is finitely generated over A (if {w;} are
generators of M and {v;} are generators of N then {w,v;} are generators of
MN). This proves our proposition.

In Proposition 1.4, the set of elements of C which are integral over A is
called the integral closure of 4 in C.

Example. Consider the integers Z. Let K be a finite extension of Q. We
call K a number field. The integral closure of Z in K is called the ring of
algebraic integers of K. This is the most classical example.

In algebraic geometry, one considers a finitely generated entire ring R over
Z or over a field k. Let F be the quotient field of R. One then considers the
integral closure of R in F, which is proved to be finite over R. If K is a finite
extension of F, one also considers the integral closure of R in K.

Proposition 1.5. Let A = B be an extension ring, and let B be integral
over A. Let 6 be a homomorphism of B. Then o(B) is integral over a(A).

Proof. Let a € B, and let
o" +a,,_1an_1 + "‘+ao =0
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be an integral equation for « over A. Applying o yields
o(®)" + 0(a,-)o(2)"" " + -+ + a(ag) = 0,

thereby proving our assertion.

Corollary 1.6. Let A be an entire ring, k its quotient field, and E a finite
extension of k. Let o € E be integral over A. Then the norm and trace of a
(from E to k) are integral over A, and so are the coefficients of the irreducible
polynomial satisfied by o over k.

Proof. For each embedding ¢ of E over k, 6a is integral over A. Since the
norm is the product of oo over all such ¢ (raised to a power of the characteristic),
it follows that the norm is integral over A. Similarly for the trace, and similarly
for the coefficients of Irr(a, k, X), which are elementary symmetric functions of
the roots.

Let A be an entire ring and k its quotient field. We say that A is integrally
closed if it is equal to its integral closure in k.

Proposition 1.7. Let A be entire and factorial. Then A is integrally closed.

Proof. Suppose that there exists a quotient a/b with a, b € A which is
integral over A4, and a prime element p in 4 which divides b but not a. We have,
for some integer n = 1, and g; € 4,

(a/b)" + ay_,(a/b)"" ' + -+ a9 =0
whence
a"+ a,_ba"" ' + -+ ayb" = 0.

Since p divides b, it must divide 4", and hence must divide a, contradiction.

Let f: A - B be a ring-homomorphism (A4, B being commutative rings).
We recall that such a homomorphism is also called an A-algebra. We may
view B as an A-module. We say that B is integral over A (for this ring-homo-
morphism f) if B is integral over f(4). This extension of our definition of
integrality is useful because there are applications when certain collapsings take
place, and we still wish to speak of integrality. Strictly speaking we should
not say that B is integral over 4, but that f'is an integral ring-homomorphism,
or simply that f'is integral. We shall use this terminology frequently.

Some of our preceding propositions have immediate consequences for
integral ring-homomorphisms; for instance, if f:4 > B and g:B— C are
integral, then g o f: A — C is integral. However, it is not necessarily true that
if g o f is integral, so is f.

Let f: A — B be integral, and let S be a multiplicative subset of A. Then
we get a homomorphism

S 'f:8$7'4 - S !B,
where strictly speaking, S™'B = (f(S)) !B, and S™ 'f is defined by
(S )Nx/s) = f()/f ().
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It is trivially verified that this is a homomorphism. We have a commutative
diagram
B——S'B

A—— S 4

the horizontal maps being the canonical ones: x — x/1.

Proposition 1.8. Let f: A > B be integral, and let S be a multiplicative
subset of A. ThenS™'f: S™'A — S™'B is integral.

Proof. If o € B is integral over f(A4), then writing off instead of f(a)p for
ae A and f € Bwe have

"+ a, "+t ag=0

with a; € A. Taking the canonical image in S™'4 and S~ 'B respectively, we
see that this relation proves the integrality of a/1 over S™'A, the coefficients
being now a;/1.

Proposition 1.9. Let A be entire and integrally closed. Let S be a multipli-
cative subset of A,0¢ S. Then S™'A is integrally closed.

Proof. Let o be an element of the quotient field, integral over S~*4. We
have an equation

a-t _ ao
2w 4+ 2 =0,
Sn—1 So

a” +

a;€ A and s; € S. Let s be the product s,_, ---s,. Then it is clear that s« is
integral over A4, whence in A. Hence o lies in S™'A4, and S~ !4 is integrally
closed.

Let p be a prime ideal of a ring A and let S be the complement of p in A.
We write S = 4 — p. If f: A - Bis an A-algebra (i.e. a ring-homomorphism),
we shall write B, instead of S~ 'B. We can view B, as an 4, = S~ '4-module.

Let A be a subring of B. Let p be a prime ideal of 4 and let B be a prime
ideal of B. We say that ‘B lies above p if B n 4 = p. If that is the case, then
the injection 4 — B induces an injection of the factor rings

A/p — B/,
and in fact we have a commutative diagram:
B —— B/$

|

A———> A/p
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the horizontal arrows being the canonical homomorphisms, and the vertical
arrows being injections.
If B is integral over A4, then B/ is integral over A/p by Proposition 1.5.

Proposition 1.10. Let A be a subring of B, let p be a prime ideal of A, and
assume B integral over A. Then pB # B and there exists a prime ideal B of
B lying above p.

Proof. We know that B, is integral over A, and that A4, is a local ring
with maximal ideal m, = S™'p, where S = 4 — p. Since we obviously have

pPB, = pApo = mva’

it will suffice to prove our first assertion when A is a local ring. (Note that the
existence of a prime ideal p implies that 1 # 0,and pB = Bifand onlyif 1 € pB.)
In that case, if pB = B, then 1 has an expression as a finite linear combination
of elements of B with coefficients in p,

1=a1b1 +-'.+anbn

with g; € p and b; € B. We shall now use notation as if 4, = B,. We leave it
to the reader as an exercise to verify that our arguments are valid when we
deal only with a canonical homomorphism 4, —» B,. Let B, = A[b,, ..., b,].
Then pB, = B, and By is a finite A-module by Proposition 1.2. Hence B, = 0
by Nakayama’s lemma, contradiction. (See Lemma 4.1 of Chapter X.)

To prove our second assertion, note the following commutative diagram:

P

 —

o ———
o NG, .

P

We have just proved m, B, # B,. Hence m, B, is contained in a maximal ideal
I of B,. Taking inverse images, we see that the inverse image of M in 4, is an
ideal containing m, (in the case of an inclusion 4, < B, the inverse image is
M N A,). Since m, is maximal, we have M N 4, = m,. Let P be the inverse
image of M in B (in the case of inclusion, B = I ~ B). Then P is a prime
ideal of B. The inverse image of m, in A is simply p. Taking the inverse image
of M going around both ways in the diagram, we find that

BnA=np,
as was to be shown.
Proposition 1.11. Let A be a subring of B, and assume that B is integral

over A. Let B be a prime ideal of B lying over a prime ideal p of A. Then P
is maximal if and only if p is maximal.
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Proof. Assume p maximal in 4. Then A/p is a field, and B/*f is an entire
ring, integral over A/p. If o € B/B, then « is algebraic over A/p, and we know
that A/p[«] is a field. Hence every non-zero element of B/ is invertible in
B/B, which is therefore a field. Conversely, assume that B is maximal in B.
Then B/ is a field, which is integral over the entire ring A/p. If A/p is not a
field, it has a non-zero maximal ideal m. By Proposition 1.10, there exists a
prime ideal 9 of B/P lying above m, WM # 0, contradiction.

§2. INTEGRAL GALOIS EXTENSIONS

We shall now investigate the relationship between the Galois theory of a
polynomial, and the Galois theory of this same polynomial reduced modulo a
prime ideal.

Proposition 2.1. Let A be an entire ring, integrally closed in its quotient
field K. Let L be a finite Galois extension of K with group G. Let p be a
maximal ideal of A, and let B, Q be prime ideals of the integral closure B of
A in L lying above p. Then there exists ¢ € G such that B = Q.

Proof. Suppose that Q # ¢*B for any o € G. Then 1Q # ¢ for any pair
of elements ¢, T € G. There exists an element x € B such that

x=0 (modaoP), alloe G
x =1 (mod o), alloe G

(use the Chinese remainder theorem). The norm

Ni(x) = [] ox
ceG
lies in B n K = A (because A is integrally closed), and lies in N 4 = p.
But x ¢ ¢Q for all 6 € G, so that 6x ¢ Q for all 6 € G. This contradicts the fact
that the norm of x liesin p = Q N A.

If one localizes, one can eliminate the hypothesis that p is maximal; just
assume that p is prime.

Corollary 2.2 Let A be integrally closed in its quotient field K. Let E be a
finite separable extension of K, and B the integral closure of A in E. Let p be
a maximal ideal of A. Then there exists only a finite number of prime ideals of
B lying above p.

Proof. Let L be the smallest Galois extension of K containing E. If Q,,
{Q, are two distinct prime ideals of B lying above p, and B,, B, are two prime
ideals of the integral closure of 4 in L lying above R, and Q, respectively, then
B, # B,. This argument reduces our assertion to the case that E is Galois
over K, and it then becomes an immediate consequence of the proposition.
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Let A be integrally closed in its quotient field K, and let B be its integral
closure in a finite Galois extension L, with group G. Then ¢B = B for every
o € G. Let p be a maximal ideal of 4, and ® a maximal ideal of B lying above p.
We denote by Gy the subgroup of G consisting of those automorphisms such
that ¢ = . Then Gy operates in a natural way on the residue class field
B/B, and leaves A/p fixed. To each o € Gy we can associate an automorphism
a of B/B over A/p, and the map given by

o0

induces a homomorphism of Gy into the group of automorphisms of B/
over A/p.

The group Gy will be called the decomposition group of B. Its fixed field
will be denoted by L%°, and will be called the decomposition field of B. Let
B be the integral closure of 4 in L9, and Q = P n B%*°. By Proposition 2.1,
we know that B is the only prime of B lying above Q.

Let G = | Jo;Gy be a coset decomposition of Gy in G. Then the prime
ideals o;*B are precisely the distinct primes of B lying above p. Indeed, for two
elements ¢, T € G we have ¢ = tB if and only if 17 '6P = B, i.e. 7~ !0 lies in
Gg. Thus 7, ¢ lie in the same coset mod Gg.

It is then immediately clear that the decomposition group of a prime o3

is 6Ggo™ 1.

Proposition 2.3. The field L% is the smallest subfield E of L containing
K such that ‘B is the only prime of B lying above B N E (which is prime in
BN E)

Proof. Let E be as above, and let H be the Galois group of L over E. Let
q = B n E. By Proposition 2.1, all primes of B lying above q are conjugate by
elements of H. Since there is only one prime, namely B, it means that H leaves
B invariant. Hence G = Gy and E > L*°. We have already observed that
L% has the required property.

Proposition 2.4. Notation being as above, we have A/p = B°/Q (under
the canonical injection A/p — B*°/Q).

Proof. 1If ¢ is an element of G, not in Gy, then 6B # P and ¢™'P # P.
Let

Q, = 67 1P n B,

Then Q, # Q. Let x be an element of BY*. There exists an element y of B
such that

y=x (modRQ)
y=1 (mod Q,)
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for each ¢ in G, but not in Gg. Hence in particular,

y=x (mod PB)
y=1 (mode ! P)

for each ¢ not in Gg,. This second congruence yields
oy=1 (mod P)

forall o ¢ Gg. The norm of y from L% to K is a product of y and other factors
oy with 0 ¢ Gg. Thus we obtain

N&“(») = x  (mod ).

But the norm lies in K, and even in 4, since it is a product of elements integral
over A. This last congruence holds mod Q, since both x and the norm lie in
BUc. This is precisely the meaning of the assertion in our proposition.

If x is an element of B, we shall denote by X its image under the homo-
morphism B — B/B. Then g is the automorphism of B/P satisfying the relation

6% = (%).

If £(X) is a polynomial with coefficients in B, we denote by f(X) its natural
image under the above homomorphism. Thus, if

fX)=b,X"+ -+ + by,
then
J(X) = b, X"+ - + bo.

Proposition 2.5. Let A be integrally closed in its quotient field K, and let
B be its integral closure in a finite Galois extension L of K, with group G.
Let p be a maximal ideal of A, and B a maximal ideal of B lying above p.
Then B/B is a normal extension of A/p, and the map o — & induces a homo-
morphism of Gg onto the Galois group of B/ over A/p.

Proof. Let B = B/$ and 4 = A/p. Any element of B can be written as
% for some x € B. Let X generate a separable subextension of B over A4, and let
f be the irreducible polynomial for x over K. The coefficients of f lie in A4
because x is integral over A4, and all the roots of f are integral over A. Thus

00 = [T = x)
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splits into linear factors in B. Since

fx) = Z(X—x)

and all the x; lie in B, it follows that fsplits into linear factors in B. We observe
that f(x) = 0 implies f(X) = 0. Hence B is normal over A, and

[A(X): 4] < [K(x): K] = [L:K].

This implies that the maximal separable subextension of 4 in B is of finite
degree over A (using the primitive element theorem of elementary field theory).
This degree is in fact bounded by [L: K].

There remains to prove that the map o+ & gives a surjective homo-
morphism of Gy onto the Galois group of B over A. To do this, we shall give
an argument which reduces our problem to the case when % is the only prime
ideal of B lying above p. Indeed, by Proposition 2.4, the residue class fields of
the ground ring and the ring B*° in the decomposition field are the same.
This means that to prove our surjectivity, we may take L%° as ground field.
This is the desired reduction, and we can assume K = L%, G = Gg,.

This being the case, take a generator of the maximal separable subextension
of B over 4, and let it be X, for some element x in B. Let f be the irreducible
polynomial of x over K. Any automorphism of B is determined by its effect
on X, and maps X on some root of f. Suppose that x = x,. Given any root x;
of f, there exists an element ¢ of G = Gy such that ox = x;. Hence 6% = X;.
Hence the automorphisms of B over A4 induced by elements of G operate
transitively on the roots of /. Hence they give us all automorphisms of the
residue class field, as was to be shown.

Corollary 2.6. Let A be integrally closed in its quotient field K. Let L be a
finite Galois extension of K, and B the integral closure of A in L. Let p be a
maximal ideal of A. Let ¢: A — A/p be the canonical homomorphism, and let
Y1, ¥, be two homomorphisms of B extending ¢ in a given algebraic closure
of A/p. Then there exists an automorphism o of L over K such that

Y=y 00

Proof. The kernels of y/,, , are prime ideals of B which are conjugate
by Proposition 2.1. Hence there exists an element 7 of the Galois group G
such that ;, , o 7 have the same kernel. Without loss of generality, we may
therefore assume that /,, Y, have the same kernel . Hence there exists an
automorphism w of y,(B) onto ,(B) such that w oy, = ,. There exists an
element ¢ of Gy such that w < ¥, =y, o g, by the preceding proposition. This
proves what we wanted.
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Remark. In all the above propositions, we could assume p prime instead
of maximal. In that case, one has to localize at p to be able to apply our proofs.

In the above discussions, the kernel of the map

is called the inertia group of B. It consists of those automorphisms of Gg
which induce the trivial automorphism on the residue class field. Its fixed field
is called the inertia field, and is denoted by L.

Corollary 2.7. Let the assumptions be as in Corollary 2.6 and assume that
B is the only prime of B lying above p. Let f(X) be a polynomial in A[X]
with leading coefficient 1. Assume that f is irreducible in K[ X], and has a
root o in B. Then the reduced polynomial f is a power of an irreducible poly-
nomial in A[X].

Proof. By Corollary 2.6, we know that any two roots of f are conjugate
under some isomorphism of B over 4, and hence that fcannot split into relative
prime polynomials. Therefore, f is a power of an irreducible polynomial.

Proposition 2.8. Let A be an entire ring, integrally closed in its quotient
field K. Let L be a finite Galois extension of K. Let L = K(«), where o is
integral over A, and let

= +a,,_1 +"'+a0
f(X) )& Xn—l

be the irreducible polynomial of o over k, with a; € A. Let p be a maximal
ideal in A, let B be a prime ideal of the integral closure B of A in L, B lying
above p. Let f(X) be the reduced polynomial with coefficients in A/p. Let
Gg be the decomposition group. If [ has no multiple roots, then the map
6 — & has trivial kernel, and is an isomorphism of Gg on the Galois group of

f over AJp.
Proof. Let
SO =T - x)
be the factorization of f in L. We know that all x;e B. If o € Gg, then we

denote by & the homomorphic image of ¢ in the group Gg, as before. We
have

f&X) =X - ).

Suppose that 6%; = X; for all i. Since (6X;) = 6%, and since f has no multiple
roots, it follows that ¢ is also the identity. Hence our map is injective, the in-
ertia group is trivial. The field A[X,, ..., X,] is a subfield of B and any auto-
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morphism of B over 4 which restricts to the identity on this subfield must be
the identity, because the map Ggq — G‘n is onto the Galois group of B over A.
Hence B is purely inseparable over A[X,,...,X,] and therefore Gy is iso-
morphic to the Galois group of f over A.

Proposition 2.8 is only a special case of the more-general situation when
the root of a polynomial does not necessarily generate a Galois extension. We
state a version useful to compute Galois groups.

Theorem 2.9. Let A be an entire ring, integrally closed in its quotient field
K. Let f(X)e A[X] have leading coefficient 1 and be irreducible over K
(or A, it’s the same thing). Let p be a maximal ideal of A and let f = f mod p.
Suppose that f has no multiple roots in an algebraic closure of A/p. Let
L be a splitting field for f over K, and let B be the integral closure of A in
L. Let B be any prime of B above p and let a bar denote reduction mod p.
Then the map
Gy — Gy

is an isomorphism of Gg with the Galois group of f over A.

Proof. Let (ay, ..., a,) be the roots of fin B and let (&,,..., &,) be their
reductions mod P. Since

fX)=[X-a
i=1
it follows that

f&x) = H(X—a)

Any element of G is determined by its effect as a permutation of the roots, and
for o € Gy, we have

Eii = O'Ot,-.
Hence if 6 = id then ¢ = id, so the map Gq — Gg, is injective. It is surjective
by Proposition 2.5, so the theorem is proved.

This theorem justifies the statement used to compute Galois groups in Chapter
VI, §2.

Theorem 2.9 gives a very efficient tool for analyzing polynomials over a
ring.

Example. Consider the “generic” polynomial

X)) =X"+w, X"+ +w,
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where wy, . .., w,_, are algebraically independent over a field k. We know that
the Galois group of this polynomial over the field K = k(wy, ..., w,_) is the
symmetric group. Letz,, ..., , be the roots. Let a be a generator of the splitting
field L; that is, L = K(«). Without loss of generality, we can select « to be
integral over the ring k[wy, . . . , w,_;](multiply any given generator by a suitably
chosen polynomial and use Proposition 1.1). Let g,,(X) be the irreducible poly-
nomial of « over k(wy, ..., w,_;). The coefficients of g are polynomials in (w).
If we can substitute values (a) for (w) with aq, . . ., a,_; € k such that g, remains
irreducible, then by Proposition 2.8 we conclude at once that the Galois group
of g, is the symmetric group also. Similarly, if a finite Galois extension of
k(wg, . .., w,_;) has Galois group G, then we can do a similar substitution to
geta Galois extension of k having Galois group G, provided the special polynomial
g, remains irreducible.

Example. Let K be a number field; that is, a finite extension of Q. Let o
be the ring of algebraic integers. Let L be a finite Galois extension of K and O
the algebraic integers in L. Let p be a prime of 0 and B a prime of Olying above
p. Then o/p is a finite field, say with g elements. Then /% is a finite extension
of o/p, and by the theory of finite fields, there is a unique element in E‘m called
the Frobenius element F_rl‘, such that F_rq,(i ) = x7 for x € O/P. The conditions
of Theorem 2.9 are satisfied for all but a finite number of primes p, and for such
primes, there is a unique element Fry € Gg such that Fry(x) = x? mod P for all
x €. We call Fry, the Frobenius element in Gy. Cf. Chapter VI, §15, where
some of the significance of the Frobenius element is explained.

§3. EXTENSION OF HOMOMORPHISMS

When we first discussed the process of localization, we considered very
briefly the extension of a homomorphism to a local ring. In our discussion of
field theory, we also described an extension theorem for embeddings of one
field into another. We shall now treat the extension question in full generality.

First we recall the case of a local ring. Let A be a commutative ring and p
a prime ideal. We know that the local ring A, is the set of all fractions x/y, with
x,y € A and y ¢ p. Its maximal ideal consists of those fractions with x € p. Let
L be a field and let ¢: A — L be a homomorphism whose kernel is p. Then we
can extend ¢ to a homomorphism of 4, into L by letting

o(x/y) = p(x)/e(y)

if x/y is an element of A4, as above.
Second, we have integral ring extensions. Let o be a local ring with maximal
ideal m, let B be integral over o, and let ¢ :0 — L be a homomorphism of o
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into an algebraically closed field L. We assume that the kernel of ¢ is m. By
Proposition 1.10, we know that there exists a maximal ideal Mt of B lying above
m, i.e. such that M N o = m. Then B/M is a field, which is an algebraic exten-
sion of o/m, and o/m is isomorphic to the subfield ¢(o) of L because the kernel
of ¢ is m.

We can find an isomorphism of o/m onto ¢(o) such that the composite
homomorphism

0> o/m— L

is equal to ¢. We now embed B/ into L so as to make the following diagram
commutative:

B—— Bfm
I o/m L

and in this way get a homomorphism of B into L which extends ¢.

Proposition 3.1. Let A be a subring of B and assume that B is integral over
A. Let ¢: A — L be a homomorphism into a field L which is algebraically
closed. Then ¢ has an extension to a homomorphism of B into L.

Proof. Let p be the kernel of ¢ and let S be the complement of p in A.
Then we have a commutative diagram

B——S'B

|

A—— S 4= 4,

and ¢ can be factored through the canonical homomorphism of 4 into S~ 4.
Furthermore, S™'B is integral over S™!A. This reduces the question to the
case when we deal with a local ring, which has just been discussed above.

Theorem 3.2. Let A be a subring of a field K and let x€ K, x # 0. Let
¢:A— L be a homomorphism of A into an algebraically closed field L.
Then ¢ has an extension to a homomorphism of A[x] or A[x~ '] into L.

Proof. We may first extend ¢ to a homomorphism of the local ring 4,,
where p is the kernel of ¢. Thus without loss of generality, we may assume that
A is a local ring with maximal ideal m. Suppose that

mA[x" 1] = A[x"1].
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Then we can write
l=ay+ax '+ +ax"
with a; e m. Multiplying by x" we obtain
(I —a))x"+b,_ x" '+ .- +b,=0

with suitable elements b; € A. Since aq € m, it follows that 1 — ay ¢ m and
hence 1 — a, is a unit in 4 because A4 is assumed to be a local ring. Dividing
by 1 — a, we see that x is integral over A, and hence that our homomorphism
has an extension to A[x] by Proposition 3.1.

If on the other hand we have

mA[x~ 1] # A[x 1]

then mA[x~!] is contained in some maximal ideal B of A[x" '] and P N A
contains m. Since m is maximal, we must have s N 4 = m. Since ¢ and the
canonical map A — A/m have the same kernel, namely m, we can find an
embedding  of A/m into L such that the composite map

is equal to ¢. We note that A/m is canonically embedded in B/ where
B = A[x™ '], and extend ¥ to a homomorphism of B/ into L, which we can
do whether the image of x ™! in B/ is transcendental or algebraic over 4/m.
The composite B — B/§ — L gives us what we want.

Corollary 3.3. Let A be a subring of a field K and let L be an algebraically
closed field. Let ¢ : A — L be a homomorphism. Let B be a maximal subring
of K to which ¢ has an extension homomorphism into L. Then B is a local
ringand if xe K, x # 0,then xe Bor x ' € B.

Proof. Let S be the set of pairs (C, ) where C is a subring of K and
Y : C - L is a homomorphism extending ¢. Then S is not empty (containing
(A4, 9)], and is partially ordered by ascending inclusion and restriction. In
other words, (C, ) < (C',y) if C = C’ and the restriction of Y’ to C is equal
to . It is clear that S is inductively ordered, and by Zorn’s lemma there exists
a maximal element, say (B, i/,). Then first B s a local ring, otherwise i, extends
to the local ring arising from the kernel, and second, B has the desired property
according to Theorem 3.2.

Let B be a subring of a field K having the property that given x € K, x # 0,
then x € B or x™! € B. Then we call B a valuation ring in K. We shall study
such rings in greater detail in Chapter XII. However, we shall also give some
applications in the next chapter, so we make some more comments here.
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Let F be a field. We let the symbol oo satisfy the usual algebraic rules. If
a€F, we define

a+ o= o, a-o = o0 if a #0,
1 1

0+ 00 = 00, —=o and — =0.
0 00

The expressions co + o0, 0- 00, 0/0, and co/00 are not defined.
A place ¢ of a field K into a field F is a mapping

¢:K - {F, o}

of K into the set consisting of F and oo satisfying the usual rules for a homo-
morphism, namely

pla + b) = ¢(a) + ¢(b),
@(ab) = p(a)p(b)

whenever the expressions on the right-hand side of these formulas are defined,
and such that ¢(1) = 1. We shall also say that the place is F-valued. The
elements of K which are not mapped into oo will be called finite under the place,
and the others will be called infinite.

The reader will verify at once that the set o of elements of K which are
finite under a place is a valuation ring of K. The maximal ideal consists of those
elements x such that ¢(x) = 0. Conversely, if o is a valuation ring of K with
maximal ideal m, we let ¢:0 — o/m be the canonical homomorphism, and
define (x) = oo for x € K, x ¢ 0. Then it is trivially verified that ¢ is a place.

If o,: K - {F,, 0} and ¢,: K — {F,, o0} are places of K, we take their
restrictions to their images. We may therefore assume that they are surjective.
We shall say that they are equivalent if there exists an isomorphism A: F; - F,
such that ¢, = @, o4 (We put A(c0) = c0.) One sees that two places are
equivalent if and only if they have the same valuation ring. It is clear that there
is a bijection between equivalence classes of places of K, and valuation rings of
K. A place is called trivial if it is injective. The valuation ring of the trivial place
is simply K itself.

As with homomorphisms, we observe that the composite of two places is also
a place (trivial verification).

It is often convenient to deal with places instead of valuation rings, just as it is
convenient to deal with homomorphisms and not always with canonical homo-
morphisms or a ring modulo an ideal.

The general theory of valuations and valuation rings is due to Krull, All-
gemeine Bewertungstheorie, J. reine angew. Math. 167 (1932), pp. 169-196.
However, the extension theory of homomorphisms as above was realized only
around 1945 by Chevalley and Zariski.
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We shall now give some examples of places and valuation rings.

Example 1. Let p be a prime number. Let Z,, be the ring of all rational
numbers whose denominator is not divisible by p. Then Z, is a valuation ring.
The maximal ideal consists of those rational numbers whose numerator is divisible

by p.

Example 2. Let k be a field and R = k[X] the polynomial ring in one
variable. Let p = p(X) be an irreducible polynomial. Let o be the ring of rational
functions whose denominator is not divisible by p. Then o is a valuation ring,
similar to that of Example 1.

Example 3. Let R be the ring of power series k[[X]] in one variable. Then
R is a valuation ring, whose maximal ideal consists of those power series divisible
by X. The residue class field is k itself.

Example 4. LetR = k{[X,, ..., X,]] be the ring of power series in several
variables. Then R is not a valuation ring, but R is imbedded in the field of repeated
power series k((X))((X;)) - - - ((X,,)) = K,,. By Example 3, there is a place of
K, which is K,_,-valued. By induction and composition, we can define a
k-valued place of K,. Since the field of rational functions k(X,,..., X,) is
contained in K,,, the restriction of this place to k(X|, ..., X,,) gives a k-valued
place of the field of rational functions in n variables.

Example 5. In Chapter XI we shall consider the notion of ordered field.
Let & be an ordered subfield of an ordered field K. Let o be the subset of elements
of K which are not infinitely large with respect to k. Let m be the subset of
elements of o which are infinitely small with respect to k. Then o is a valuation
ring in K and m is its maximal ideal.

The following property of places will be used in connection with projective
space in the next chapter.

Proposition 3.4. Let ¢: K — {L, x} be an L-valued place of K. Given a
finite number of non-zero elements x|, . . ., x,, € K there exists an index j such
that @ is finite on x;/x; for i = 1,..., n.

Proof. Let B be the valuation ring of the place. Define x; = x; to mean that
x;/x; € B. Then the relation = is transitive, that is if x; = x; and x; = x, then
x; = x,. Furthermore, by the property of a valuation ring, we always have
x; = x; or x; = x; for all pairs of indices i, j. Hence we may order our ele-
ments, and we select the index j such that x; = x; for all i. This index j

satisfies the requirement of the proposition.

We can obtain a characterization of integral elements by means of val-
uation rings. We shall use the following terminology. If o, © are local
rings with maximal ideals m, IR respectively, we shall say that O lies above o
ifo = O and M n o = m. We then have a canonical injection o/m — O/
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Proposition 3.5. Let 0 be a local ring contained in a field L. An element x of
L is integral over o if and only if x lies in every valuation ring O of L lying
above o.

Proof. Assume that x is not integral over o. Let m be the maximal ideal of o.
Then the ideal (m, 1/x) of o[1/x] cannot be the entire ring, otherwise we can
write

—1=al/x)+ - +a(l/x)+y
with ye m and g; € 0. From this we get
T4+yx"+---+a,=0.

But 1 + yis not in m, hence is a unit of o. We divide the equation by 1 + y to

conclude that x is integral over o, contrary to our hypothesis. Thus (m, 1/x) is

not the entire ring, and is contained in a maximal ideal f, whose intersection

with o contains m and hence must be equal to m. Extending the canonical homo-

morphism o[ 1/x] — o[ 1/x]/B to a homomorphism of a valuation ring O of L,

we see that the image of 1/x is 0 and hence that x cannot be in this valuation ring.
Conversely, assume that x is integral over o, and let

X"+ a, x4+ o+ ay=0

be an integral equation for x with coefficients in 0. Let © be any valuation ring
of L lying above o. Suppose x ¢ O. Let ¢ be the place given by the canonical
homomorphism of O modulo its maximal ideal. Then ¢(x) = o so ¢(1/x) = 0.
Divide the above equation by x”, and apply ¢. Then each term except the first
maps to O under ¢, so we get ¢(1) = 0, a contradiction which proves the
proposition.-

Proposition 3.6. Let A be a ring contained in a field L. An element x of L
is integral over A if and only if x lies in every valuation ring O of L containing
A. In terms of places, x is integral over A if and only if every place of L finite
on A is finite on x.

Proof. Assume that every place finite on A is finite on x. We may assume
x # 0.If 1/x is a unit in A[1/x] then we can write

x=cy+c(1/x) + -+ c,_;(1/x)""!

with ¢; € A and some n. Multiplying by x"~! we conclude that x is integral over
A. If 1/x is not a unit in A[1/x], then 1/x generates a proper principal ideal.
By Zorn’s lemma this ideal is contained in a maximal ideal J. The homomorphism
A[1/x] — A[1/x]/% can be extended to a place which is a finite on A but maps



352 EXTENSION OF RINGS VII, Ex

1/x on 0, so x on , which contradicts the possibility that 1/x is not a unit in
A[1/x] and proves that x is integral over A. The converse implication is proved
just as in the second part of Proposition 3.5.

Remark. Let K be a subfield of L and let x € L. Then x is integral over
K if and only if x is algebraic over K. So if a place ¢ of L is finite on K, and x
is algebraic over K, then ¢ is finite on K(x). Of course this is a trivial case of
the integrality criterion which can be seen directly. Let

"+, x" M 4y =0

be the irreducible equation for x over K. Suppose x # 0. Then a;, # 0. Hence
¢(x) # 0 immediately from the equation, so ¢ is an isomorphism of K(x) on its
image.

The next result is a generalization whose technique of proof can also be used
in Exercise 1 of Chapter IX (the Hilbert-Zariski theorem).

Theorem 3.7. General Integrality Criterion. Let A be an entire ring.

Letzy, ..., z, be elements of some extension field of its quotient field K. Assume
that each z, (s = 1, ..., m) satisfies a polynomial relation
%+ gy )=0
Zg gszl,...,zm

where g,(Z,, ..., Z,) € AlZ,, ..., Z,] is a polynomial of total degree < di,
and that any pure power of Z, occuring with non-zero coefficient in g; occurs
with a power strictly less than d;. Then z,, . . ., z,, are integral over A.

Proof. We apply Proposition 3.6. Suppose some z; is not integral over A.
There exists a place ¢ of K, finite on A, such that ¢(z;) = % for some s. By
Proposition 3.4 we can pick an index s such that ¢(z;/z,) # « for all j. We
divide the polynomial relation of the hypothesis in the lemma by z% and apply
the place. By the hypothesis on g, it follows that ¢(g,(z)/z%) = 0, whence we
get 1 = 0, a contradiction which proves the theorem.

EXERCISES

1. Let K be a Galois extension of the rationals Q, with group G. Let B be the integral
closure of Z in K, and let « € B be such that K = Q(a). Let f(X) = Irr(x, Q, X). Let
p be a prime number, and assume that f remains irreducible mod p over Z/pZ. What
can you say about the Galois group G? (Artin asked this question to Tate on his qualify-
ing exam.)

2. Let A be an entire ring and K its quotient field. Let ¢ be transcendental over K. If 4
is integrally closed, show that A[¢] is integrally closed.
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For the following exercises, you can use §1 of Chapter X.

3. Let A be an entire ring, integrally closed in its quotient field K. Let L be a finite separable
extension of K, and let B be the integral closure of 4 in L. If A is Noetherian, show that
B is a finite A-module. [Hint: Let {w,, ..., w,} be a basis of L over K. Multiplying
all elements of this basis by a suitable element of 4, we may assume without loss of
generality that all w; are integral over 4. Let {w, ..., w,} be the dual basis relative to
the trace, so that Tr(w;w}) = §,;. Write an element o of L integral over 4 in the form

o=bw,+ -+ b,w,

with b; € K. Taking the trace Tr(aw,), fori = 1,..., n, conclude that B is contained
in the finite module Aw] + -+ + Aw,.] Hence B is Noetherian.

4. The preceding exercise applies to the case when A = Z and k = Q. Let L be a finite
extension of Q and let o, be the ring of algebraic integers in L. Let oy, ..., o, be
the distinct embeddings of L into the complex numbers. Embedded o, into a Euclidean
space by the map

ab>(oa,..., 0,q).

Show that in any bounded region of space, there is only a finite number of elements
of o;. [Hint: The coefficients in an integral equation for « are elementary symmetric
functions of the conjugates of « and thus are bounded integers.] Use Exercise 5 of
Chapter III to conclude that o, is a free Z-module of dimension = #n. In fact, show
that the dimension is n, a basis of o, over Z also being a basis of L over Q.

5. Let E be a finite extension of Q, and let o, be the ring of algebraic integers of E. Let
U be the group of units of oz. Let o, ..., o, be the distinct embeddings of E into
C. Map U into a Euclidean space, by the map

lar>(loglo,al,..., log|o,al).

Show that /[(U) is a free abelian group, finitely generated, by showing that in any finite
region of space, there is only a finite number of elements of i(U). Show that the kernel
of lis a finite group, and is therefore the group of roots of unity in E. Thus U itself is a
finitely generated abelian group.

6. Generalize the results of §2 to infinite Galois extensions, especially Propositions 2.1
and 2.5, using Zorn’s lemma.

7. Dedekind rings. Let o be an entire ring which is Noetherian, integrally closed, and
. such that every non-zero prime ideal is maximal. Define a fractional ideal a to be an
o -submodule # 0 of the quotient field K such that there exists ¢ € 0, ¢ # 0 for which
ca Co. Prove that the fractional ideals form a group under multiplication. Hint
following van der Waerden: Prove the following statements in order:
(a) Given an ideal a # 0 in o, there exists a product of prime ideals
p,-p,Ca.
(b) Every maximal ideal p is invertible, i.e. if we let p~! be the set of elements
x € K such that xpCo, thenp~'p=o.
(c) Every non-zero ideal is invertible, by a fractional ideal. (Use the Noetherian
property that if this is not true, there exists a maximal non-invertible ideal
a, and get a contradiction.)
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8. Using prime ideals instead of prime numbers for a Dedekind ring A, define the notion
of content as in the Gauss lemma, and prove that if f(X), g(X) € A[X] are polynomials
of degree = 0 with coefficients in A, then cont(fg) = cont(f)cont(g). Also if K is
the quotient field of A, prove the same statement for f, g € K[X].

9. Let A be an entire ring, integrally closed. Let B be entire, integral over A. Let O,
0, be prime ideals of B with Q; D O, but Q, ¥ Q,. Let P, = Q; N A. Show that
P, # P,.
10. Let n be a positive integer and let {, ¢’ be primitive n-th roots of unity.
(a) Show that (1 — )/(1 — (') is an algebraic integer.
(b) If n = 6 is divisible by at least two primes, show that 1 — { is a unit in the
ring Z[{].
11. Let p be a prime and ¢ a primitive p-th root of unity. Show that there is a principal
ideal J in Z[{] such that JP~! = (p) (the principal ideal generated by p).

Symmetric Polynomials

12. Let F be a field of characteristic 0. Let ¢, .. ., t, be algebraically independent over F.
Let si,...,s, be the elementary symmetric functions. Then R = Flt,...,t,] is an
integral extension of S = FJ[s,...,s,), and actually is its integral closure in the
rational field F(¢,...,1,). Let W be the group of permutation of the variables
ooy ty.

(a) Show that S = R" is the fixed subring of R under W.
(b) Show that the elements #;' --- ¢* with 0 < r; < n — i form a basis of R over
S, so in particular, R is free over S.

I am told that the above basis is due to Kronecker. There is a much more interesting
basis, which can be defined as follows.

Let 6,...,0, be the partial derivatives with respect to #,,...,1,, so &; = 0/0t;. Let
PeFl) = F[n,...,1,). Substituting &; for ; (i=1,...,n) gives a partial differential
operator P(8) = P(y,...,0,) on R. An element of S can also be viewed as an element of

R. Let Q € R. We say that Q is W-harmenic if P(0)Q = 0 for all symmetric polynomials
P e S with 0 constant term. It can be shown that the W-harmonic polynomials form a
finite dimensional space. Furthermore, if {H),..., Hy} is a basis for this space over F,
then it is also a basis for R over S. This is a special case of a general theorem of Che-
valley. See [La 99b], where the special case is worked out in detail.



CHAPTER VI I I

Transcendental Extensions

Both for their own sake and for applications to the case of finite exten-
sions of the rational numbers, one is led to deal with ground fields which are
function fields, i.e. finitely generated over some field k, possibly by elements
which are not algebraic. This chapter gives some basic properties of such
fields.

§1. TRANSCENDENCE BASES

Let K be an extension field of a field k. Let S be a subset of K. We
recall that S (or the elements of S) is said to be algebraically independent
over k, if whenever we have a relation

0=y a,M,S) =Y a(v).xljs XV

with coefficients a,, € k, almost all a,, = 0, then we must necessarily have all
ag = 0.

We can introduce an ordering among algebraically independent subsets of
K, by ascending inclusion. These subsets are obviously inductively ordered,
and thus there exist maximal elements. If S is a subset of K which is
algebraically independent over k, and if the cardinality of S is greatest among
all such subsets, then we call this cardinality the transcendence degree or
dimension of K over k. Actually, we shall need to distinguish only between
finite transcendence degree or infinite transcendence degree. We observe that

355
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the notion of transcendence degree bears to the notion of algebraic indepen-
dence the same relation as the notion of dimension bears to the notion of
linear independence.

We frequently deal with families of elements of K, say a family {x;};,
and say that such a family is algebraically independent over k if its elements
are distinct (in other words, x; # x; if i # j) and if the set consisting of the
elements in this family is algebraically independent over k.

A subset S of K which is algebraically independent over k and is maximal
with respect to the inclusion ordering will be called a transcendence base of
K over k. From the maximality, it is clear that if S is a transcendence base
of K over k, then K is algebraic over k(S).

Theorem 1.1. Let K be an extension of a field k. Any two transcendence
bases of K over k have the same cardinality. If T is a subset of K such that
K is algebraic over KT'), and S is a subset of I which is algebraically indepen-
dent over k, then there exists a transcendence base ® of K over k such that
SCR®CT.

Proof. We shall prove that if there exists one finite transcendence base, say
{x4, ..., Xy}, m = 1, m minimal, then any other transcendence base must also
have m elements. For this it will suffice to prove: If w, ..., w, are elements
of K which are algebraically independent over k then n = m (for we can then
use symmetry). By assumption, there exists a non-zero irreducible polynomial
fiin m + 1 variables with coefficients in k such that

fiwy, xp, oo X)) = 00

After renumbering xy, . .. , x,, we may write f; = Z gi(wy, Xz, . .. , X,,) x} with
some gy # 0 with some N = 1. No irreducible factor of gy vanishes on
(wy, X3, . . . , X,), otherwise w; would be a root of two distinct irreducible polyno-
mials over k(x;, ..., x,). Hence x, is algebraic over k(w,, x,, ... , x,,) and
wy, X3, ... , X, are algebraically independent over k, otherwise the minimal-
ity of m would be contradicted. Suppose inductively that after a suitable re-
numbering of x,, ... , x,, we have found wy, ... , w, (r < n) such that K is
algebraic over k(w;, ... , W,, X+, --- , X). Then there exists a non-zero
polynomial f in m + 1 variables with coefficients in k such that

TWrs1s Wiy oo s Wy Xpigs - -+ 5 X)) = 0.

Since the w’s are algebraically independent over k, it follows by the same argument
as in the first step that some x;, say x,., is algebraic over k(w;, ... , w,yy,
X412, --- » X,,). Since a tower of algebraic extensions is algebraic, it follows
that K is algebraic over k(wy, ... , W41, X,42, --. » X,,). We can repeat the
procedure, and if n Z m we can replace all the x’s by w’s, to see that K is
algebraic over k(wy, . .. , w,,). This shows that n = m implies n = m, as desired.
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We have now proved: Either the transcendence degree is finite, and is
equal to the cardinality of any transcendence base, or it is infinite, and every
transcendence base is infinite. The cardinality statement in the infinite case
will be left as an exercise. We shall also leave as an exercise the statement
that a set of algebraically independent elements can be completed to a
transcendence base, selected from a given set I' such that K is algebraic over
k(I'). (The reader will note the complete analogy of our statements with those
concerning linear bases.)

Note. The preceding section is the only one used in the next chapter. The
remaining sections are more technical, especially §3 and §4 which will not be
used in the rest of the book. Even §2 and §5 will only be mentioned a
couple of times, and so the reader may omit them until they are referred to
again.

§2. NOETHER NORMALIZATION THEOREM

Theorem 2.1. Let k[x,,...,x,] = k[x] be a finitely generated entire ring
over a field k, and assume that k(x) has transcendence degree r. Then there
exist elements y,, ..., y, in k[x] such that k[x] is integral over

k[y] = kLyi, .5 v ).

Proof. 1If (x4,...,x,) are already algebraically independent over k, we
are done. If not, there is a non-trivial relation

jl e jn —_
Y agxt - xim=0

with each coefficient a; €k and a; #0. The sum is taken over a finite
number of distinct n-tuples of integers (j,...,jn) j, = 0. Let m,,...,m, be
positive integers, and put

Y2 =X — x’l"z, s Y =Xy — x'lnn‘
Substitute x; = y; + x* (i =2,...,n) in the above equation. Using vector
notation, we put (m) =(1,m,, ..., m,) and use the dot product (j):(m) to

denote j, + m,j, + -+ m,j,. If we expand the relation after making the
above substitution, we get

z c(i)x(lj).('n) + f(xla Yas oo yn) =0

where f is a polynomial in which no pure power of x; appears. We now
select d to be a large integer [say greater than any component of a vector ()
such that c; # 0] and take

(m)=(1,d,d? ...,d".
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Then all (j):(m) are distinct for those (j) such that c; # 0. In this way we
obtain an integral equation for x, over k[y,,..., y,]. Since each x; (i > 1)
is integral over k[xq,y,,...,y,), it follows that k[x] is integral over
k[yz,---»¥.]- We can now proceed inductively, using the transitivity of
integral extensions to shrink the number of y’s until we reach an alge-
braically independent set of y’s.

The advantage of the proof of Theorem 2.1 is that it is applicable when k
is a finite field. The disadvantage is that it is not linear in x,, ..., x,. We
now deal with another technique which leads into certain aspects of algebraic
geometry on which we shall comment after the next theorem.

We start again with k[x,,..., x,] finitely generated over k and entire.
Let (u;) (i, j = 1,..., n) be algebraically independent elements over k(x), and
let k, = k(u) = k(u;),y; ;- Put

n
yi= Z U X;.
J=1

This amounts to a generic linear change of coordinates in n-space, to use
geometric terminology. Again we let r be the transcendence degree of k(x)
over k.

Theorem 2.2. With the above notation, k,[x] is integral over
ku[y19"'ayr]'

Proof. Suppose some x; is not integral over k,[y;,...,y,]. Then there
exists a place ¢ of k,(y) finite on k,[y,,..., y,] but taking the value oo on
some x;. Using Proposition 3.4 of Chapter VII, and renumbering the indices
if necessary, say ¢(x;/x,) is finite for all i. Let zj = @(x;/x,) for j=1,...,n.
Then dividing the equations y; = ) u;x; by x, (for i =1,...,r) and applying
the place, we get

O=wuy 21 +ugz5 + -+ Uy,

0 = urlz,l + ur2212 + Upy-

The transcendence degree of k(z’) over k cannot be r, for otherwise, the place
¢ would be an isomorphism of k(x) on its image. [Indeed, if, say, zi,..., z,
are algebraically independent and z; = x;/x,, then z,, ..., z, are also alge-
braically independent, and so form a transcendence base for k(x) over k.
Then the place is an isomorphism from k(z4,...,z,) to k(zi,...,z), and
hence is an isomorphism from k(x) to its image.] We then conclude that

Uypy +o-y Upy € KUy, 2°) with i=1,...,r; j=1,...,n— 1

Hence the transcendence degree of k(u) over k would be < rn — 1, which is a
contradiction, proving the theorem.
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Corollary 2.3. Let k be a field, and let k(x) be a finitely generated
extension of transcendence degree r. There exists a polynomial P(u) =
P(uy) € k[u] such that if (c) = (c;) is a family of elements c;; € k satisfying
P(c) # 0, and we let y; = Zcijxj, then k[x] is integral over k[yi,..., /]

Proof. By Theorem 2.2, each x; is integral over k,[y,,...,y]. The
coefficients of an integral equation are rational functions in k,. We let P(u)
be a common denominator for these rational functions. If P(c) # 0, then
there is a homomorphism

@: k(x)[u, P()™'] - k(x)

such that ¢(u) = (c), and such that ¢ is the identity on k(x). We can apply ¢
to an integral equation for x; over k,[y] to get an integral equation for x;
over k[y'], thus concluding the proof.

Remark. After Corollary 2.3, there remains the problem of finding ex-
plicitly integral equations for x,...,x, (O Y41, ..., yu) Over k,[y.,..., y,].
This is an elimination problem, and I have decided to refrain from further
involvement in algebraic geometry at this point. But it may be useful to
describe the geometric language used to interpret Theorem 2.2 and further
results in that line. After the generic change of coordinates, the map

(yla-”’yn)H(yls"" yr)

is the generic projection of the variety whose coordinate ring is k[x] on
affine r-space. This projection is finite, and in particular, the inverse image of
a point on affine r-space is finite. Furthermore, if k(x) is separable over k (a
notion which will be defined in §4), then the extension k,(y) is finite separable
over k,(yy,...,y,) (in the sense of Chapter V). To determine the degree of
this finite extension is essentially Bezout’s theorem. Cf. [La 58], Chapter
VIII, §6.

The above techniques were created by van der Waerden and Zariski, cf,
for instance, also Exercises 5 and 6. These techniques have unfortunately not
been completely absorbed in some more recent expositions of algebraic
geometry. To give a concrete example: When Hartshorne considers the
intersection of a variety and a sufficiently general hyperplane, he does not
discuss the “generic” hyperplane (that is, with algebraically independent
coefficients over a given ground field), and he assumes that the variety is
non-singular from the start (see his Theorem 8.18 of Chapter 8, [Ha 77]).
But the description of the intersection can be done without simplicity as-
sumptions, as in Theorem 7 of [La 58], Chapter VII, §6, and the corre-
sponding lemma. Something was lost in discarding the technique of the
algebraically independent (u;;).

After two decades when the methods illustrated in Chapter X have been
prevalent, there is a return to the more explicit methods of generic construc-
tions using the algebraically independent (u;) and similar ones for some
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applications because part of algebraic geometry and number theory are
returning to some problems asking for explicit or effective constructions, with
bounds on the degrees of solutions of algebraic equations. See, for instance,
[Ph 91-95], [So 90], and the bibliography at the end of Chapter X, §6. Return-
ing to some techniques, however, does not mean abandoning others; it
means only expanding available tools.
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§3. LINEARLY DISJOINT EXTENSIONS

In this section we discuss the way in which two extensions K and L of a
field k behave with respect to each other. We assume that all the fields
involved are contained in one field Q, assumed algebraically closed.

K is said to be linearly disjoint from L over k if every finite set of
elements of K that is linearly independent over k is still such over L.

The definition is unsymmetric, but we prove right away that the property
of being linearly disjoint is actually symmetric for K and L. Assume K
linearly disjoint from L over k. Let y,,...,y, be elements of L linearly
independent over k. Suppose there is a non-trivial relation of linear depen-
dence over K,

Y X1y1+ X2y, + 0+ XY, =0
Say x,, ..., x, are linearly independent over k, and x,,,, ..., X, are linear

r
combinations x; = Y a;,x,, i=r+1,..., n. We can write the relation (1) as

u=1

us

follows:

quyu+ Z ( 1aiuxu>yi=0

u=1 i=r+1 \u=

and collecting terms, after inverting the second sum, we get

Z <y[4 + Z (aiuyi)> xu =0.
p=1 i=r+1
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The y’s are linearly independent over k, so the coefficients of x, are # 0.
This contradicts the linear disjointness of K and L over k.
We now give two criteria for linear disjointness.

Criterion 1. Suppose that K is the quotient field of a ring R and L the
quotient field of a ring S. To test whether L and K are linearly disjoint, it
suffices to show that if elements y,, ..., y, of S are linearly independent over
k, then there is no linear relation among the y’s with coefficients in R.
Indeed, if elements y,,...,y, of L are linearly independent over k, and if
there is a relation x,y; + - + x,y, = 0 with x; € K, then we can select y in
S and x in R such that xy #0, yy;e S for all i, and xx;e R for all i
Multiplying the relation by xy gives a linear dependence between elements of
R and S. However, the yy; are obviously linearly independent over k, and
this proves our criterion.

Criterion 2. Again let R be a subring of K such that K is its quotient
field and R is a vector space over k. Let {u,} be a basis of R considered as a
vector space over k. To prove K and L linearly disjoint over k, it suffices to
show that the elements {u,} of this basis remain linearly independent over L.
Indeed, suppose this is the case. Let x,..., x,, be elements of R linearly
independent over k. They lie in a finite dimension vector space generated by
some of the u,, say u,,...,u, They can be completed to a basis for this
space over k. Lifting this vector space of dimension n over L, it must
conserve its dimension because the u’s remain linearly independent by hy-
pothesis, and hence the x’s must also remain linearly independent.

Proposition 3.1. Let K be a field containing another field k, and let
L 5 E be two other extensions of k. Then K and L are linearly disjoint
over k if and only if K and E are linearly disjoint over k and KE, L are

linearly disjoint over E.
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Proof. Assume first that K, E are linearly disjoint over k, and KE, L are
linearly disjoint over E. Let {k} be a basis of K as vector space over k (we
use the elements of this basis as their own indexing set), and let {a} be a
basis of E over k. Let {4} be a basis of L over E. Then {a4} is a basis of L
over k. If K and L are not linearly disjoint over k, then there exists a
relation

Y <le C, n") Ax=0  with some c,;, #0, ¢, 1, € k.

Aa

Changing the order of summation gives

; <KZ c,daxa>,1 =0

VA

contradicting the linear disjointness of L and KE over E.

Conversely, assume that K and L are linearly disjoint over k. Then a
fortiori, K and E are also linearly disjoint over k, and the field KE is the
quotient field of the ring E[K] generated over E by all elements of K. This
ring is a vector space over E, and a basis for K over k is also a basis for this
ring E[K] over E. With this remark, and the criteria for linear disjointness,
we see that it suffices to prove that the elements of such a basis remain
linearly independent over L. At this point we see that the arguments given
in the first part of the proof are reversible. We leave the formalism to the
reader.

We introduce another notion concerning two extensions K and L of a
field k. We shall say that K is free from L over k if every finite set of
elements of K algebraically independent over k remains such over L. If (x)
and (y) are two sets of elements in Q, we say that they are free over k (or
independent over k) if k(x) and k(y) are free over k.

Just as with linear disjointness, our definition is unsymmetric, and we
prove that the relationship expressed therein is actually symmetric. Assume
therefore that K is free from L over k. Let y,,...,y, be elements of L,
algebraically independent over k. Suppose they become dependent over K.
They become so in a subfield F of K finitely generated over k, say of
transcendence degree r over k. Computing the transcendence degree of F(y)
over k in two ways gives a contradiction (cf. Exercise 5).

F(y)

<n r

N A

k(y)
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Proposition 3.2. If K and L are linearly disjoint over k, then they are free
over k.

Proof. Let x4, ..., x, be elements of K algebraically independent over k.
Suppose they become algebraically dependent over L. We get a relation

Y VaM,(x) =0

between monomials M, (x) with coefficients y, in L. This gives a linear
relation among the M,(x). But these are linearly independent over k because
the x’s are assumed algebraically independent over k. This is a contradiction.

Proposition 3.3. Let L be an extension of k, and let (u) = (u,,...,u,) be a
set of quantities algebraically independent over L. Then the field k(u) is
linearly disjoint from L over k.

Proof. According to the criteria for linear disjointness, it suffices to
prove that the elements of a basis for the ring k[u] that are linearly indepen-
dent over k remain so over L. In fact the monomials M(u) give a basis of
k[u] over k. They must remain linearly independent over L, because as
we have seen, a linear relation gives an algebraic relation. This proves our
proposition.

Note finally that the property that two extensions K and L of a field k
are linearly disjoint or free is of finite type. To prove that they have either
property, it suffices to do it for all subfields K, and L, of K and L
respectively which are finitely generated over k. This comes from the fact
that the definitions involve only a finite number of quantities at a time.

§4. SEPARABLE AND REGULAR EXTENSIONS

Let K be a finitely generated extension of k, K = k(x). We shall say that
it is separably generated if we can find a transcendence basis (¢,,...,¢,) of
K/k such that K is separably algebraic over k(t). Such a transcendence base
is said to be a separating transcendence base for K over k.

We always denote by p the characteristic if it is not 0. The field obtained
from k by adjoining all p™-th roots of all elements of k will be denoted by
kY?". The compositum of all such fields for m = 1, 2, ..., is denoted by k7",

Proposition 4.1. The following conditions concerning an extension field K
of k are equivalent:

() K is linearly disjoint from k7"
(ii) K is linearly disjoint from kY™ for some m.
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(ii) Every subfield of K containing k and finitely generated over k is
separably generated.

Proof. 1t is obvious that (i) implies (ii). In order to prove that (ii)
implies (iii), we may clearly assume that K is finitely generated over k, say

K = k(x) = k(xq, ..., x,).

Let the transcendence degree of this extension be r. If r = n, the proof is
complete. Otherwise, say x,,..., x, is a transcendence base. Then x,., is
algebraic over k(x,,...,x,). Let f(X,,..., X,;;) be a polynomial of lowest
degree such that

f(xls L EXE) xr+1) =0.

Then f is irreducible. We contend that not all x; (i =1,...,r + 1) appear to
the p-th power throughout. If they did, we could write f(X) =) ¢,M,(X)’
where M,(X) are monomials in X, ..., X,,; and ¢, e k. This would imply
that the M,(x) are linearly dependent over k'? (taking the p-th root of the
equation Y ¢,M,(x)’ = 0). However, the M,(x) are linearly independent over
k (otherwise we would get an equation for x,, ..., x,,,; of lower degree) and
we thus get a contradiction to the linear disjointness of k(x) and kY. Say
X, does not appear to the p-th power throughout, but actually appears in
S(X). We know that f(X) is irreducible in k[X,,..., X,,,] and hence f(x)=0
is an irreducible equation for x; over k(x,,...,x,.;). Since X, does not
appear to the p-th power throughout, this equation is a separable equation
for x, over k(x,,....,x,.1), in other words, x, is separable algebraic over
k(xy, ..., x,+1). From this it follows that it is separable algebraic over
k(x,, ..., x,). If (x,,...,x,) is a transcendence base, the proof is complete. If
not, say that x, is separable over k(x;,..., x,). Then k(x) is separable over
k(xs, ..., x,). Proceeding inductively, we see that the procedure can be
continued until we get down to a transcendence base. This proves that (ii)
implies (iii). It also proves that a separating transcendence base for k(x) over
k can be selected from the given set of generators (x).

To prove that (iii) implies (i) we may assume that K is finitely generated
over k. Let (u) be a transcendence base for K over k. Then K is separably
algebraic over k(u). By Proposition 3.3, k(1) and k"7 are linearly disjoint.
Let L = kY7, Then k(u)L is purely inseparable over k(u), and hence is
linearly disjoint from K over k(u) by the elementary theory of finite algebraic
extensions. Using Proposition 3.1, we conclude that K is linearly disjoint
from L over k, thereby proving our theorem.

An extension K of k satisfying the conditions of Proposition 4.1 is called
separable. This definition is compatible with the use of the word for alge-
braic extensions.

The first condition of our theorem is known as MacLane’s criterion. It
has the following immediate corollaries.
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Corollary 4.2. If K is separable over k, and E is a subfield of K contain-
ing k, then E is separable over k.

Corollary 4.3. Let E be a separable extension of k, and K a separable
extension of E. Then K is a separable extension of k.

Proof. Apply Proposition 3.1 and the definition of separability.
Corollary 4.4. If k is perfect, every extension of k is separable.

Corollary 4.5. Let K be a separable extension of k, and free from an
extension L of k. Then KL is a separable extension of L.

Proof. An element of KL has an expression in terms of a finite number
of elements of K and L. Hence any finitely generated subfield of KL
containing L is contained in a composite field FL, where F is a subfield of K
finitely generated over k. By Corollary 4.2, we may assume that K is finitely
generated over k. Let (t) be a transcendence base of K over k, so K is
separable algebraic over k(t). By hypothesis, (t) is a transcendence base of
KL over L, and since every element of K is separable algebraic over k(t), it
is also separable over L(t). Hence KL is separably generated over L. This
proves the corollary.

Corollary 4.6. Let K and L be two separable extensions of k, free from
each other over k. Then KL is separable over k.

Proof. Use Corollaries 4.5 and 4.3.

Corollary 4.7. Let K, L be two extensions of k, linearly disjoint over k.
Then K is separable over k if and only if KL is separable over L.

Proof. If K is not separable over k, it is not linearly disjoint from k'/?
over k, and hence a fortiori it is not linearly disjoint from LkY? over k. By
Proposition 4.1, this implies that KL is not linearly disjoint from LkY? over
L, and hence that KL is not separable over L. The converse is a special case
of Corollary 4.5, taking into account that linearly disjoint fields are free.

We conclude our discussion of separability with two results. The first one
has already been proved in the first part of Proposition 4.1, but we state it
here explicitly.

Proposition 4.8. If K is a separable extension of k, and is finitely gener-
ated, then a separating transcendence base can be selected from a given set
of generators.

To state the second result we denote by K?™ the field obtained from K
by raising all elements of K to the p™-th power.
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Proposition 4.9. Let K be a finitely generated extension of a field k. If
K"k = K for some m, then K is separably algebraic over k. Conversely, if
K is separably algebraic over k, then K"k = K for all m.

Proof. 1If K/k is separably algebraic, then the conclusion follows from
the elementary theory of finite algebraic extensions. Conversely, if K/k is
finite algebraic but not separable, then the maximal separable extension of k
in K cannot be all of K, and hence K?k cannot be equal to K. Finally, if
there exists an element t of K transcendental over k, then k(t'/?™) has degree
p™ over k(t), and hence there exists a t such that t¥?" does not lie in K. This
proves our proposition.

There is a class of extensions which behave particularly well from the
point of view of changing the ground field, and are especially useful in
algebraic geometry. We put some results together to deal with such exten-
sions. Let K be an extension of a field k, with algebraic closure K® We
claim that the following two conditions are equivalent:

REG 1. k is algebraically closed in K (i.e. every element of K algebraic
over k lies in k), and K is separable over k.

REG 2. K is linearly disjoint from k* over k.

We show the equivalence. Assume REG 2. By Proposition 4.1, we know that
K is separably generated over k. It is obvious that k must be algebraically
closed in K. Hence REG 2 implies REG 1. To prove the converse we need
a lemma.

Lemma 4.10. Let k be algebraically closed in extension K. Let x be
some element of an extension of K, but algebraic over k. Then k(x) and K
are linearly disjoint over k, and [k(x): k] = [K(x): K].

Proof. Let f(X) be the irreducible polynomial for x over k. Then f
remains irreducible over K; otherwise, its factors would have coefficients
algebraic over k, hence in k. Powers of x form a basis of k(x) over k, hence
the same powers form a basis of K(x) over K. This proves the lemma.

To prove REG 2 from REG 1, we may assume without loss of generality
that X is finitely generated over k, and it suffices to prove that K is linearly
disjoint from an arbitrary finite algebraic extension L of k. If L is separable
algebraic over k, then it can be generated by one primitive element, and we
can apply Lemma 4.10.

More generally, let E be the maximal separable subfield of L containing
k. By Proposition 3.1, we see that it suffices to prove that KE and L are
linearly disjoint over E. Let (¢f) be a separating transcendence base for K
over k. Then K is separably algebraic over k(t). Furthermore, () is also a
separating transcendence base for KE over E, and KE is separable algebraic
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over E(t). Thus KE is separable over E, and by definition KE is linearly
disjoint from L over K because L is purely inseparable over E. This proves
that REG 1 implies REG 2.

Thus we can define an extension K of k to be regular if it satisfies either
one of the equivalent conditions REG 1 or REG 2.

Proposition 4.11.

(a) Let K be a regular extension of k, and let E be a subfield of K containing
k. Then E is regular over k.

(b) Let E be a regular extension of k, and K a regular extension of E.
Then K is a regular extension of k.

(cy If k is algebraically closed, then every extension of k is regular.

Proof. Each assertion is immediate from the definition conditions REG
1 and REG 2.

Theorem 4.12. Let K be a regular extension of k, let L be an arbitrary
extension of k, both contained in some larger field, and assume that K, L
are free over k. Then K, L are linearly disjoint over k.

Proof (Artin). Without loss of generality, we may assume that K is
finitely generated over k. Let x,,..., x, be elements of K linearly indepen-
dent over k. Suppose we have a relation of linear dependence

X1)1 +'”+xnyn=0

with y;e L. Let ¢ be a k*-valued place of L over k. Let (¢) be a transcen-
dence base of K over k. By hypothesis, the elements of (f) remain alge-
braically independent over L, and hence ¢ can be extended to a place of KL
which is identity on k(t). This place must then be an isomorphism of K on
its image, because K is a finite algebraic extension of k() (remark at the
end of Chapter VII, §3). After a suitable isomorphism, we may take a place
equivalent to ¢ which is the identity on K. Say ¢(y;/y,) is finite for all i (use
Proposition 3.4 of Chapter VII). We divide the relation of linear dependence
by y, and apply ¢ to get Y x;¢(y;/y,) =0, which gives a linear relation
among the x; with coefficients in k* contradicting the linear disjointness.
This proves the theorem.

Theorem 4.13. Let K be a regular extension of k, free from an extension
L of k over k. Then KL is a regular extension of L.

Proof. From the hypothesis, we deduce that K is free from the algebraic
closure L* of L over k. By Theorem 4.12, K is linearly disjoint from L?* over
k. By Proposition 3.1, KL is linearly disjoint from L? over L, and hence KL
is regular over L.
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Corollary 4.14. Let K, L be regular extensions of k, free from each other
over k. Then KL is a regular extension of k.

Proof. Use Corollary 4.13 and Proposition 4.11(b).

Theorem 4.13 is one of the main reasons for emphasizing the class of
regular extensions: they remain regular under arbitrary base change of the
ground field k. Furthermore, Theorem 4.12 in the background is important
in the study of polynomial ideals as in the next section, and we add
some remarks here on its implications. We now assume that the reader is
acquainted with the most basic properties of the tensor product (Chapter
XVI, §1 and §2).

Corollary 4.15. Let K = k(x) be a finitely generated regular extension,
free from an extension L of k, and both contained in some larger field.
Then the natural k-algebra homomorphism

L ®, k[x] - L[x]

is an isomorphism.

Proof. By Theorem 4.12 the homomorphism is injective, and it is obvi-
ously surjective, whence the corollary follows.

Corollary 4.16. Let k(x) be a finitely generated regular extension, and let
p be the prime ideal in k[X] vanishing on (x), that is, consisting of all
polynomials f(X)e k[ X] such that f(x) =0. Let L be an extension of k,
free from k(x) over k. Let p, be the prime ideal in L[ X] vanishing on (x).
Then p, = pL[X], that is p; is the ideal generated by p in L[X], and in
particular, this ideal is prime.

Proof. Consider the exact sequence
0-p-ok[X]->k[x]-0.

Since we are dealing with vector spaces over a field, the sequence remains
exact when tensored with any k-space, so we get an exact sequence

0-L®,p—LX]>L® k[x]—>0.
By Corollary 4.15, we know that L &, k[x] = L[x], and the image of L &, p
in L[X] is pL[X], so the lemma is proved.

Corollary 4.16 shows another aspect whereby regular extensions behave
well under extension of the base field, namely the way the prime ideal p
remains prime under such extensions.
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§56. DERIVATIONS

A derivation D of a ring R is a mapping D: R - R of R into itself which is
linear and satisfies the ordinary rule for derivatives, i.e.,

D(x + y) = Dx + Dy and D(xy) = xDy + yDx.

As an example of derivations, consider the polynomial ring k[ X] over a field
k. For each variable X;, the partial derivative 0/0X; taken in the usual
manner is a derivation of k[ X].

Let R be an entire ring and let K be its quotient field. Let D: R —> R be a
derivation. Then D extends uniquely to a derivation of K, by defining

vDu — uDv
D(u/v) = —

It is immediately verified that the expression on the right-hand side is
independent of the way we represent an element of K as u/v (u, v € R), and
satisfies the conditions defining a derivation.

Note. In this section, we shall discuss derivations of fields. For deriva-
tions in the context of rings and modules, see Chapter XIX, §3.

A derivation of a field K is trivial if Dx = O for all x € K. It is trivial over
a subfield k of K if Dx =0 for all x e k. A derivation is always trivial over
the prime field: One sees that

D(1) = D(1-1) = 2D(1),
whence D(1) = 0.
We now consider the problem of extending derivations. Let

L = K(x) =K(xq,..., x,)

be a finitely generated extension. If fe K[X], we denote by df/dx; the
polynomials Jf/0X; evaluated at (x). Given a derivation D on K, does there
exist a derivation D* on L coinciding with D on K? If f(X)e K[X] is a
polynomial vanishing on (x), then any such D* must satisfy

1) 0 = D*f(x) = fP(x) + X (f/0x;) D*x;,

where f? denotes the polynomial obtained by applying D to all coefficients
of f. Note that if relation (1) is satisfied for every element in a finite set of
generators of the ideal in K[ X] vanishing on (x), then (1) is satisfied by every
polynomial of this ideal. This is an immediate consequence of the rules for
derivations. The preceding ideal will also be called the ideal determined by
(x)in K[X].
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The above necessary condition for the existence of a D* turns out to be
sufficient.

Theorem 5.1. Let D be a derivation of a field K. Let

(x) = (xla [RRE] xn)
be a finite family of elements in an extension of K. Let {f,(X)} be a set of
generators for the ideal determined by (x) in K[X]. Then, if (u) is any set
of elements of K(x) satisfying the equations
0 = f2(x) + X (0fa/Ox;)u;,
there is one and only one derivation D* of K(x) coinciding with D on K,
and such that D*x; = u; for every i.

Proof. The necessity has been shown above. Conversely, if g(x), h(x) are
in K[x], and h(x) # 0, one verifies immediately that the mapping D* defined
by the formulas

og
* = D — .
D*g(x) = g°(x) + Y, o,

hD*g — gD*h
o

is well defined and is a derivation of K(x).

D*(g/h) =

Consider the special case where (x) consists of one element x. Let D be a
given derivation on K.

Case 1. x is separable algebraic over K. Let f(X) be the irreducible
polynomial satisfied by x over K. Then f’'(x) # 0. We have

0= fP(x) + f'(x)u,

whence u = —f?(x)/f'(x). Hence D extends to K(x) uniquely. If D is trivial
on K, then D is trivial on K(x).

Case 2. x is transcendental over K. Then D extends, and u can be
selected arbitrarily in K(x).

Case 3. x is purely inseparable over K, so x? —a =0, with ae K. Then
D extends to K(x) if and only if Da = 0. In particular if D is trivial on K,
then u can be selected arbitrarily.

Proposition 5.2. A finitely generated extension K(x) over K is separable
algebraic if and only if every derivation D of K(x) which is trivial on K is
trivial on K(x).

Proof. If K(x) is separable algebraic over K, this is Case 1. Conversely,
if it is not, we can make a tower of extensions between K and K(x), such
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that each step is covered by one of the three above cases. At least one step
will be covered by Case 2 or 3. Taking the uppermost step of this latter
type, one sees immediately how to construct a derivation trivial on the
bottom and nontrivial on top of the tower.

Proposition 5.3. Given K and elements (x) = (x,, ..., x,) in some extension
field, assume that there exist n polynomials f, e K[ X] such that:

(i) fi(x)=0, and
(i1) det(df;/0x;) # 0.

Then (x) is separably algebraic over K.

Proof. Let D be a derivation on K(x), trivial on K. Having f;(x) = 0 we
must have Df;(x) = 0, whence the Dx; satisfy n linear equations such that the
coefficient matrix has non-zero determinant. Hence Dx; =0, so D is trivial
on K(x). Hence K(x) is separable algebraic over K by Proposition 5.2.

The following proposition will follow directly from Cases 1 and 2.

Proposition 54. Let K = k(x) be a finitely generated extension of k. An
element z of K is in K?k if and only if every derivation D of K over k is
such that Dz = 0.

Proof. 1If z is in KPk, then it is obvious that every derivation D of K
over k vanishes on z. Conversely, if z ¢ K7k, then z is purely inseparable
over K”k, and by Case 3 of the extension theorem, we can find a derivation
D trivial on Kk such that Dz = 1. This derivation is at first defined on the
field KPk(z). One can extend it to K as follows. Suppose there is an element
w € K such that w ¢ KPk(z). Then w?” € K?k, and D vanishes on w?. We can
then again apply Case 3 to extend D from KPk(z) to K?k(z, w). Proceeding
stepwise, we finally reach K, thus proving our proposition.

The derivations D of a field K form a vector space over K if we define zD
for z € K by (zD)(x) = zDx.

Let K be a finitely generated extension of k, of dimension r over k. We
denote by D the K-vector space of derivations D of K over k (derivations of
K which are trivial on k). For each z € K, we have a pairing

(D, z)> Dz

of (D, K) into K. Each element z of K gives therefore a K-linear functional
of ®. This functional is denoted by dz. We have

d(yz) = y dz + z dy,
dly + 2) =dy + dz.

These linear functionals form a subspace F of the dual space of D, if we
define y dz by (D, y dz)+ yDz.
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Proposition 5.5. Assume that K is a separably generated and finitely
generated extension of k of transcendence degree r. Then the vector space
D (over K) of derivations of K over k has dimension r. Elements t,,...,t,
of K from a separating transcendence base of K over k if and only if
dt,, ..., dt, form a basis of the dual space of D over K.

Proof. 1Ift,,...,t, is a separating transcendence base for K over k, then
we can find derivations D, ..., D, of K over k such that D;t; = §;;, by Cases
1 and 2 of the extension theorem. Given D € D, let w; = Dt;. Then clearly
D =Y wD,, and so the D, form a basis for D over K, and the dt; form the
dual basis. Conversely, if dt,, ..., dt, is a basis for F over K, and if K is not
separably generated over k(t), then by Cases 2 and 3 we can find a derivation
D which is trivial on k(t) but nontrivial on K. If D,, ..., D, is the dual basis
of dt,, ..., dt, (so D;it; = 6;) then D, Dy, ..., D, would be linearly independent
over K, contradicting the first part of the theorem.

Corollary 5.6. Let K be a finitely generated and separably generated
extension of k. Let z be an element of K transcendental over k. Then K is
separable over k(z) if and only if there exists a derivation D of K over k
such that Dz # 0.

Proof. 1If K is separable over k(z), then z can be completed to a separat-
ing base of K over k and we can apply the proposition. If Dz s 0, then
dz # 0, and we can complete dz to a basis of F over K. Again from the
proposition, it follows that K will be separable over k(z).

Note. Here we have discussed derivations of fields. For derivations in
the context of rings and modules, see Chapter XV
As an application, we prove:

Theorem 5.7. (Zariski—Matsusaka). Let K be a finitely generated sepa-
rable extension of a field k. Let y, ze K and z ¢ KPk if the characteristic
is p> 0. Let u be transcendental over K, and put k, = k(u), K, = K(u).

(@) For all except possibly one value of c € k, K is a separable extension of
k(y + cz). Furthermore, K, is separable over k,(y + uz).

(b) Assume that K is regular over k, and that its transcendence degree is at
least 2. Then for all but a finite number of elements cek, K is
a regular extension of k(y + cz). Furthermore, K, is regular over
k,(y + uz).

Proof. We shall use throughout the fact that a subfield of a finitely
generated extension is also finitely generated (see Exercise 4).

If wis an element of K, and if there exists a derivation D of K over
k such that Dw # 0, then K is separable over k(w), by Corollary 5.6. Also
by Corollary 5.6, there exists D such that Dz #0. Then for all elements
c€ k, except possibly one, we have D(y + cz) =Dy + cDz#0. Also we
may extend D to K, over k, by putting Du =0, and then one sees that
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D(y+uz)= Dy + uDz # 0, so K is separable over k(y + cz) except possibly
for one value of ¢, and K, is separable over k,(y + uz). In what follows,
we assume that the constants c;, c¢,, ... are different from the exceptional
constant, and hence that K is separable over k(y + ¢;z) fori =1, 2.

Assume next that K is regular over k and that the transcendence degree
is at least 2. Let E; = k(y + ¢;z) (i = 1, 2) and let E; be the algebraic closure
of E; in K. We must show that E; = E; for all but a finite number of
constants. Note that k(y, z) = E,E, is the compositum of E; and E,, and
that k(y, z) has transcendence degree 2 over k. Hence E] and E; are free
over k. Being subfields of a regular extension of k, they are regular over k,
and are therefore linearly disjoint by Theorem 4.12.

By construction, E; and Ej are finite separable algebraic extensions of E;
and E, respectively. Let L be the separable algebraic closure of k(y, z) in K.
There is only a finite number of intermediate fields between k(y, z) and L.
Furthermore, by Proposition 3.1 the fields E{(y, z) and Ej(y, z) are linearly
disjoint over k(y, z). Let ¢, range over the finite number of constants which
will exhaust the intermediate extensions between L and k(y, z) obtainable by
lifting over k(y, z) a field of type E;. If ¢, is now chosen different from any
one of these constants c,, then the only way in which the condition of linear
disjointness mentioned above can be compatible with our choice of ¢, is that
E5(y, z) = k(y, z), ie. that E), = k(y + c,z). This means that k(y + c,z) is
algebraically closed in K, and hence that K is regular over k(y + ¢,z).

As for K, let u,, u,, ... be infinitely many elements algebraically indepen-
dent over K. Let k' = k(u,,u,,...) and K' = K(u,, u,,...) be the fields
obtained by adjoining these elements to k and K respectively. By what has
already been proved, we know that K' is regular over k'(u + u;z) for all
but a finite number of integers i, say for i = 1. Our assertion (a) is then
a consequence of Corollary 4.14. This concludes the proof of Theorem 5.7.
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Theorem 5.8. Let K = k(x,, ..., x,) = k(x) be a finitely generated regular
extension of a field k. Let u,,...,u, be algebraically independent over
k(x). Let

Upyy = Uy Xy + ot Uy Xys

and let k, = k(uy, ..., u,, t,,,). Then k(x) is separable over k,, and if the
transcendence degree of k(x) over k is =2, then k,(x) is regular over k,.

Proof. By the separability of k(x) over k, some x; does not lie in K?k,
say x, ¢ KPk. Then we take

Y=UiXy + Uy Xy and z =X,
so that u,,, =y + u,z, and we apply Theorem 5.7 to conclude the proof.

Remark. In the geometric language of the next chapter, Theorem 5.8
asserts that the intersection of a k-variety with a generic hyperplane

ule +”"l'un)(n—urﬁl =0

is a k,-variety, if the dimension of the k-variety is =2. In any case, the
extension k,(x) is separable over k,,.

EXERCISES

1. Prove that the complex numbers have infinitely many automorphisms. [Hint:
Use transcendence bases.] Describe all automorphisms and their cardinality.

2. A subfield k of a field K is said to be algebraically closed in K if every element of
K which is algebraic over k is contained in k. Prove: If k is algebraically closed
in K, and K, L are free over k, and L is separable over k or K is separable over
k, then L is algebraically closed in KL.

3. Let k = E K be extension fields. Show that
tr. deg. (K/k) = tr. deg. (K/E) + tr. deg. (E/k).

If {x;} is a transcendence base of E/k, and {y;} is a transcendence base of K/E,
then {x;, y;} is a transcendence base of K/k.

4, Let K/k be a finitely generated extension, and let K o E o k be a subextension.
Show that E/k is finitely generated.

5. Let k be a field and k(x,,...,x,) =k(x) a finite separable extension. Let
uy, ..., u, be algebraically independent over k. Let

wW=uiXy + 0+ U,X,.

Let k, = k(u,, ..., u,). Show that k,(w) = k,(x).
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6. Let k(x) = k(x,,...,x,) be a separable extension of transcendence degree r = 1.
Letu;(i=1,...,r; j=1,..., n) be algebraically independent over k(x). Let

Letk, = k(“ij).ui,j-

(a) Show that k,(x) is separable algebraic over k,(y1,..., y,).

{b) Show that there exists a polynomial P(u)e k[u] having the following prop-
erty. Let (c) = (c;;) be elements of k such that P(c) # 0. Let

vi=2, CijXj

ji=1

Then k(x) is separable algebraic over k(y’).

7. Let k be a field and k[x, ..., x,] = R a finitely generated entire ring over k with
quotient field k(x). Let L be a finite extension of k(x). Let I be the integral
closure of R in L. Show that [ is a finite R-module. [Use Noether normalization,
and deal with the inseparability problem and the separable case in two steps.]

8. Let D be a derivation of a field K. Then D" K-> K is a linear map. Let
P,=Ker D", so P, is an additive subgroup of K. An element x € K is called a
logarithmic derivative (in K) if there exists y € K such that x = Dy/y. Prove:

(a) An element x e K is the logarithmic derivative of an element ye P, but
y¢P,_, (n>0)if and only if

D+xP(1)=0 and (D +x (1) #0.

(b) Assume that K = | ) B, i.e. given x € K then x € P, for some n> 0. Let F be
a subfield of K such that DF c F. Prove that x is a logarithmic derivative in
F if and only if x is a logarithmic derivative in K. [Hint: If x = Dy/y then
(D + x) = y"'D o y and conversely.]

9. Let k be a field of characteristic 0, and let z,, ..., z, be algebraically independent
over k. Let(e;),i=1,...,mand j=1, ..., r be a matrix of integers with r =2 m,
and assume that this matrix has rank m. Let

Wy =zt g for i=1,...,m.

Show that w,, ..., w,, are algebraically independent over k. [Hint: Consider the
K-homomorphism mapping the K-space of derivations of K/k into K given by

Dw—(Dz,/z,,...,Dz,/z,),
and derive a linear condition for those D vanishing on k(w,, ..., w,,).]
10. Let k, (z) be as in Exercise 9. Show that if P is a rational function then
d(P(z)) = grad P(z)- dz,

using vector notation, i.e. dz = (dz,,...,dz,) and grad P = (D, P, ..., D,P). Define
dlog P and express it in terms of coordinates. If P, Q are rational functions in
k(z) show that

dlog(PQ)=dlog P +dlog Q.



CHAPTER IX

Algebraic Spaces

This chapter gives the basic results concerning solutions of polynomial equa-
tions in several variables over a field k. First it will be proved that if such
equations have a common zero in some field, then they have a common zero in
the algebraic closure of k, and such a zero can be obtained by the process known
as specialization. However, it is useful to deal with transcendental extensions
of k as well. Indeed, if p is a prime ideal in k[X] = k[X,,..., X,], then
k[X]1/p is a finitely generated ring over k, and the images x; of X; in this ring
may be transcendental over k, so we are led to consider such rings.

Even if we want to deal only with polynomial equations over a field, we are
led in a natural way to deal with equations over the integers Z. Indeed, if the
equations are homogeneous in the variables, then we shall prove in §3 and §4
that there are universal polynomials in their coefficients which determine whether
these equations have a common zero or not. “Universal” means that the coef-
ficients are integers, and any given special case comes from specializing these
universal polynomials to the special case.

Being led to consider polynomial equations over Z, we then consider ideals
a in Z[X]. The zeros of such an ideal form what is called an algebraic space. If
p is a prime ideal, the zeros of p form what is called an arithmetic variety. We
shall meet the first example in the discussion of elimination theory, for which
I follow van der Waerden’s treatment in the first two editions of his Moderne
Algebra, Chapter XI.

However, when taking the polynomial ring Z[X]/a for some ideal a, it usually
happens that such a factor ring has divisors of zero, or even nilpotent elements.
Thus it is also natural to consider arbitrary commutative rings, and to lay the
foundations of algebraic geometry over arbitrary commutative rings as did Groth-
endieck. We give some basic definitions for this purpose in §5. Whereas the
present chapter gives the flavor of algebraic geometry dealing with specific
polynomial ideals, the next chapter gives the flavor of geometry developing from
commutative algebra, and its systematic application to the more general cases
just mentioned.
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The present chapter and the next will also serve the purpose of giving the
reader an introduction to books on algebraic geometry, notably Hartshorne’s
systematic basic account. For instance, I have included those results which are
needed for Hartshorne’s Chapter I and II.

§1. HILBERT'S NULLSTELLENSATZ

The Nullstellensatz has to do with a special case of the extension theorem
for homomorphisms, applied to finitely generated rings over fields.

Theorem 1.1. Let k be a field, and let k[x] = k[x,, ..., x,] be a finitely
generated ring over k. Let ¢:k — L be an embedding of k into an alge-
braically closed field L. Then there exists an extension of ¢ to a homo-
morphism of k[x] into L.

Proof. Let M be a maximal ideal of k[x]. Let ¢ be the canonical homo-
morphism o : k[x] — k[x]/9. Then ck[ox,,...,0x,] is a field, and is in fact
an extension field of gk. If we can prove our theorem when the finitely generated
ring is in fact a field, then we apply ¢ - 6~ ! on ok and extend this to a homo-
morphism of gk[ox,, ..., 0x,] into L to get what we want.

Without loss of generality, we therefore assume that k[x] is a field. Ifit is
algebraic over k, we are done (by the known result for algebraic extensions).
Otherwise, let ¢,,...,t, be a transcendence basis, r = 1. Without loss of
generality, we may assume that ¢ is the identity on k. Each element x,, ..., x,
is algebraic over k(tq,...,t,). If we multiply the irreducible polynomial
Irr(x;, k(¢), X) by a suitable non-zero element of k[¢], then we get a polynomial
all of whose coefficients lie in k[t]. Let a,(¢), ..., a,(t) be the set of the leading
coefficients of these polynomials, and let a(r) be their product,

a(t) = a,(t) - - - a,(t).

Since a(t) # 0, there exist elements ¢, ..., ¢, € k? such that a(t') # 0, and
hence a;(¢t') # 0 for any i. Each x; is integral over the ring

k[t t L L ]
b b o |

Consider the homomorphism

@ k[ty,...,t,] > k?

such that ¢ is the identity on k, and ¢(t;) = t;. Let p beits kernel. Then a(t) ¢ p.
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Our homomorphism ¢ extends uniquely to the local ring k[t], and by the
preceding remarks, it extends to a homomorphism of

k1 0xqs o X,]

into k2, using Proposition 3.1 of Chapter VII. This proves what we wanted.

Corollary 1.2. Let k be a field and k[x,, ..., x,] a finitely generated ex-

tension ring of k. If k[x] is a field, then k[x] is algebraic over k.

Proof. All homomorphisms of a field are isomorphisms (onto the image),
and there exists a homomorphism of k[ x] over k into the algebraic closure of k.

Corollary 1.3. Let k[x,, ..., x,] be a finitely generated entire ring over a
field k,and let y,, ..., y,, be non-zero elements of this ring. Then there exists
a homomorphism

Wok[x] - k®
over k such that Y(y;) # 0 forallj=1,...,m.

Proof. Consider the ring k[x,...,x,, i’ ...,y.'] and apply the
theorem to this ring.

Let S be a set of polynomials in the polynomial ring k[X,,..., X,] in n
variables. Let L be an extension field of k. By a zero of S in L one means an
n-tuple of elements (¢, ..., ¢,) in L such that

f(cla"'acn) = 0

for all fe S. If S consists of one polynomial f, then we also say that (¢) is a zero
of f. The set of all zeros of S is called an algebraic set in L (or more accurately
in L™). Let a be the ideal generated by all elements of S. Since S  a it is clear
that every zero of a is also a zero of S. However, the converse obviously holds,
namely every zero of S is also a zero of a because every element of a is of type

(X f[i(X) + -+ + g,(X) fu(X)

with f;€ § and g; € k[X]. Thus when considering zeros of a set S, we may
just consider zeros of an ideal. We note parenthetically that every ideal is
finitely generated, and so every algebraic set is the set of zeros of a finite number
of polynomials. As another corollary of Theorem 1.1, we get:

Theorem 1.4. Let a be an ideal in k[X] = k[X,,..., X,]. Then either
a = k[ X] or a has a zero in k*.
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Proof. Suppose a # k[X]. Then a is contained in some maximal ideal
m, and k[ X]/m is a field, which is a finitely generated extension of k, because
it is generated by the images of X,,..., X, mod m. By Corollary 2.2, this
field is algebraic over k, and can therefore be embedded in the algebraic closure
k*. The homomorphism on k[ X] obtained by the composition of the canonical
map mod m, followed by this embedded gives the desired zero of a, and con-
cludes the proof of the theorem.

In §3 we shall consider conditions on a family of polynomials to have a
common zero. Theorem 1.4 implies that if they have a common zero in some
field, then they have a common zero in the algebraic closure of the field generated
by their coefficients over the prime field.

Theorem 1.5. (Hilbert’s Nullstellensatz). Let a be an ideal in k[X]. Let
[ be a polynomial in k[ X] such that f(c) = 0 for every zero (c) = (cyq,...,¢,)
of ain k® Then there exists an integer m > 0 such that f™ € a.

Proof. We may assume that f # 0. We use the Rabinowitsch trick of
introducing a new variable Y, and of considering the ideal a’ generated by
aand 1 — Y/ in k[X, Y]. By Theorem 1.4, and the current assumption, the
ideal a’ must be the whole polynomial ring k[ X, Y], so there exist polynomials
g;€k[X, Y] and h; € a such that

1 =go(1 = Y)+gihy +---+ g,h,.

We substitute f~! for ¥ and multiply by an appropriate power f™ of f to
clear denominators on the right-hand side. This concludes the proof.

For questions involving how effective the Nullstellensatz can be made, see
the following references also related to the discussion of elimination theory
discussed later in this chapter.
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§2. ALGEBRAIC SETS, SPACES AND VARIETIES

We shall make some very elementary remarks on algebraic sets. Let k be a
field, and let A be an algebraic set of zeros in some fixed algebraically closed
extension field of k. The set of all polynomials f € k[ X, ..., X,] such that
f(x) = 0 for all (x) € 4 is obviously an ideal a in k[ X], and is determined by
A. We shall call it the ideal belonging to A, or say that it is associated with A.
If A is the set of zeros of a set S of polynomials, then S < a, but a may be bigger
than S. On the other hand, we observe that 4 is also the set of zeros of a.

Let A, B be algebraic sets, and q, b their associated ideals. Then it is clear
that A < Bifand only if a > b. Hence A = Bif and only if a = b. This has an
important consequence. Since the polynomial ring k[X] is Noetherian, it
follows that algebraic sets satisfy the dual property, namely every descending
sequence of algebraic sets

A > A, >

must be such that 4,, = 4,,,, = - - for some integer m, i.e. all 4, are equal for
v 2 m. Furthermore, dually to another property characterizing the Noetherian
condition, we conclude that every non-empty set of algebraic sets contains a
minimal element.

Theorem 2.1. The finite union and the finite intersection of algebraic sets
are algebraic sets. If A, B are the algebraic sets of zeros of ideals a, b, respec-
tively, then A U B is the set of zeros of a N b and A ~ B is the set of zeros of
(a, b).

Proof. We first consider A U B. Let (x)e A U B. Then (x) is a zero
of a n'b. Conversely, let (x) be a zero of a n b, and suppose (x) ¢ A. There
exists a polynomial f € a such that f(x) # 0. But ab = an b and hence
(fg)(x) = Ofor all g € b, whence g(x) = 0 for all g € b. Hence (x) lies in B, and
A U B is an algebraic set of zeros of a N b.

To prove that 4 n B is an algebraic set, let (x) e A n B. Then (x) is a zero
of (a, b). Conversely, let (x) be a zero of (a, b). Then obviously (x) € 4 N B, as
desired. This proves our theorem.

An algebraic set V is called k-irreducible if it cannot be expressed as a union
V = A u B of algebraic sets 4, B with 4, B distinct from V. We also say ir-
reducible instead of k-irreducible.

Theorem 2.2. Let A be an algebraic set.
(i) Then A can be expressed as a finite union of irreducible algebraic sets
A=VU...UV.
(ii) If there is no inclusion relation among the V,, i.e. if V. € V: for i # j, then
the representation is unique.
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(iii) Let W, V,, ..., V. be irreducible algebraic sets such that

wCcwvu...UV.
Then W C 'V, for some i.

Proof. We first show existence. Suppose the set of algebraic sets which
cannot be represented as a finite union of irreducible ones is not empty. Let
V be a minimal element in its. Then V cannot be irreducible, and we can write
V = A U B where A, B are algebraic sets, but 4 # V and B # V. Since each
one of A, B is strictly smaller than V, we can express A, B as finite unions of
irreducible algebraic sets, and thus get an expression for ¥, contradiction.

The uniqueness will follow from (iii), which we prove next. Let W be con-
tained in the union V; U ... U V. Then

W=WnNV)U...UWnNVY).

Since each W N V; is an algebraic set, by the irreducibility of W we must have
W = W N V, for some i. Hence W C V, for some i, thus proving (iii).

Now to prove (ii), apply (iii) to each W;. Then for each j there is some i such
that W, C V.. Similarly for each i there exists v such that V; C W,. Since there
is no inclusion relation among the W;’s, we must have W, = V; = W,,. This proves
that each W, appears among the V;’s and each V; appears among the W;’s, and
proves the uniqueness of the representation. It also concludes the proof of Theo-
rem 2.2.

Theorem 2.3 An algebraic set is irreducible if and only if its associated ideal
is prime.

Proof. Let V be irreducible and let p be its associated ideal. If p is not
prime, we can find two polynomials f, g € k[X] such that f €p, g & p, but
fgep. Leta= (p, f) andb = (p, g). Let A be the algebraic set of zeros of a,
and B the algebraic set of zeros ofb. ThenA C V,A # Vand BC V,B # V.
Furthermore A U B = V. Indeed, A U B C V trivially. Conversely, let (x) € V.
Then (fg)(x) = 0 implies f(x) or g(x) = 0. Hence (x) € A or (x) € B, proving
V = A U B, and V is not irreducible. Conversely, let V be the algebraic set
of zeros of a prime ideal p. Suppose V.= A U B with A # Vand B # V.
Let a, b be the ideals associated with A and B respectively. There exist poly-
nomials fe a, f¢p and g €b, g ¢ p. But fg vanishes on A U B and hence lies
in p, contradiction which proves the theorem.

Warning. Given a field k£ and a prime ideal p in k[X], it may be that the
ideal generated by p in k?[X] is not prime, and the algebraic set defined over k2
by pk?[X] has more than one component, and so is not irreducible. Hence the
prefix referring to k is really necessary.

It is also useful to extend the terminology of algebraic sets as follows. Given
an ideal a C k[X], to each field K containing k we can associate to a the set
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¥, (K) consisting of the zeros of ain K. Thus %, is an association
%,: K — %,(K) C K™,

We shail speak of & itself as an algebraic space, so that & is not a set, but
to each field K associates the set ¥ (K). Thus %, is a functor from extensions
K of k to sets (functorial with respect to field isomorphisms). By a k-variety we
mean the algebraic space associated with a prime ideal p.

The notion of associated ideal applies also to such ¥, and the associated
ideal of %, is also rad(a). We shall omit the subscript a and write simply % for
this generalized notion of algebraic space. Of course we have

E‘f,u = gt rad(a)-

We say that & (K) is the set of points of ¥ in K. By the Hilbert Nullstellensatz,
Theorem 1.1, it follows that if X C K’ are two algebraically closed fields
containing k, then the ideals associated with %,(K) and %,(K") are equal to each
other, and also equal to rad(a). Thus the smallest algebraically closed field k?
containing k already determines these ideals. However, it is also useful to consider
larger fields which contain transcendental elements, as we shall see.

As another example, consider the polynomial ring k[X,, ..., X,] = k[X].
Let A" denote the algebraic space associated with the zero ideal. Then A"
is called affine n-space. Let K be a field containing k. For each n-tuple
(€. -+ cy) € K™ we get a homomorphism

o klX,,...,X,] =K

such that ¢(X;) = ¢; for all i. Thus points in A*(K) correspond bijectively to
homomorphisms of £(X) into K.

More generally, let V be a k-variety with associated prime ideal p. Then
k[X]/p is entire. Denote by & the image of X; under the canonical homomorphism
k[X] — k[X1/p. We call (£) the generic point of V over k. On the other hand,
let (x) be a point of V in some field K. Then p vanishes on (x), so the homomor-
phism ¢ : k[X] — k[x] sending X;  x; factors through k[X]/p = k[£], whence
we obtain a natural homomorphism k[§] — k[x]. If this homomorphism is an
isomorphism, then we call (x) a generic point of V in K.

Given two points (x) € A*(K) and (x’) € A(K'), we say that (x') is a
specialization of (x) (over k) if the map x; > x; is induced by a homomorphism
k[x] — k[x']. From the definition of a generic point of a variety, it is then
immediate that:

A variety V is the set of specializations of its generic point, or of a generic
point.

In other words, V(K) is the set of specializations of (&) in K for every field K
containing k.

Let us look at the converse construction of algebraic sets. Let (x) =
(xy,..., x,) be an n-tuple with coordinates x; € K for some extension field
K of k. Let p be the ideal in k[X] consisting of all polynomials f(X) such that
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f(x) = 0. We call p the ideal vanishing on (x). Then pis prime, because if
fg €p so f(x)g(x) = 0, then f € p or g €p since K has no divisors of 0. Hence
¥, is a k-variety V, and (x) is a generic point of V over k because k[X1/p= k[x].

For future use, we state the next result for the polynomial ring over a factorial
ring rather than over a field.

Theorem 2.4. Let R be a factorial ring, and letW,, . . ., W,, be m independent
variables over its quotient field k. Let k(w,, . . ., w,) be an extension of tran-
scendence degree m — 1. Then the ideal in R[W] vanishing on (w) is principal.

Proof. By hypothesis there is some polynomial P(W) € R[W] of degree
= 1 vanishing on (w), and after taking an irreducible factor we may assume
that this polynomial is irreducible, and so is a prime element in the factorial ring
R[W]. Let G(W) € R[W] vanish on (w). To prove that P divides G, after selecting
some irreducible factor of G vanishing on (w) if necessary, we may assume
without loss of generality that G is a prime element in R[W]. One of the variables
W, occurs in P(W), say W,,, so that w, is algebraic over k(wy, ..., w,,_;). Then

(wy, ..., wy,_,) are algebraically independent, and hence W, also occurs in
G. Furthermore, P(w;,..., W,_1, W,) is irreducible as a polynomial in
k(wy, ..., w,_)IW,] by the Gauss lemma as in Chapter IV, Theorem 2.3.

Hence there exists a polynomial H(W,,) € k(wy, ..., w,,_1)[W,,] such that
G(W) = HW,)P(W).

Let R = R[wy,..., W,—;]. Then P, G have content 1 as polynomials in
R'[W,]. By Chapter IV Corollary 2.2 we conclude that H € R'[W,] = R[W],

which proves Theorem 2.4.

Next we consider homogeneous ideals and projective space. A polynomial
f(X) € k[X] can be written as a linear combination

FX) = 2 cyMuyX)

with monomials M,,(X) = X;" -+ - X," and ¢, € k. We denote the degree of
M, by

IV| = deg M(V) = E Vt"

If in this expression for f the degrees of the monomials X* are all the same
(whenever the coefficient ¢, is # 0), then we say that f is a form, or also that
fis a homogeneous (of that degree). An arbitrary polynomial f(X) in K[X] can
also be written

FX) = 2FDX),

where each f@ is a form of degree d (which may be 0). We call f@ the
homogeneous part of f of degree d.

An ideal a of k[X] is called homogeneous if whenever f € a then each
homogeneous part f@ also lies in a.
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Proposition 2.5. Arn ideal a is homogeneous if and only if a has a set of
generators over k[X] consisting of forms.

Proof. Suppose a is homogeneous and that f, ..., f, are generators. By
hypothesis, for each integer d = 0 the homogeneous components (@ also lie in
a, and the set of such f{@ (for all i, d) form a set of homogeneous generators.
Conversely, let f be a homogeneous element in a and let g € K[X] be arbitrary.
For each d, gf lies in a, and g““f is homogeneous, so all the homogeneous
components of gf also lie in a. Applying this remark to the case when f ranges
over a set of homogeneous generators for a shows that a is homogeneous, and
concludes the proof of the proposition.

An algebraic space ¥ is called homogeneous if for every point (x) € % and
t transcencental over k(x), the point (£x) also lies in & . If ¢, u are transcendental
over k(x), then there is an isomorphism

klx, t] = klx, u]

which sends ¢ on u and restricts to the identity on k[x], so to verify the above
condition, it suffices to verify it for some transcendental ¢ over k(x).

Proposition 2.6. An algebraic space ¥ is homogeneous if and only if its
associated ideal a is homogeneous.

Proof. Suppose ¥ is homogeneous. Let f(X) € k[X] vanish on % . For each
{(x) € ¥ and ¢ transcendental over k(x) we have

0 =f(x) = f(zx) = 2, 19D (x).

d
Therefore f@(x) = 0 for all d, whence f@ ea for all d. Hence a is homogeneous.
Conversely, suppose a homogeneous. By the Hilbert Nullstellensatz, we know
that % consists of the zeros of a, and hence consists of the zeros of a set of
homogeneous generators for a. But if f is one of those homogeneous generators
of degree d, and (x) is a point of %, then for ¢ transcendental over k(x) we have

0 = f(x) = 1% (x) = f(tx),

so (zx) is also a zero of a. Hence & is homogeneous, thus proving the proposition.

Proposition 2.7. Let ¥ be a homogeneous algebraic space. Then each irre-
ducible component V of % is also homogeneous.

Proof. LetV =V, ..., V. be the irreducible components of %, without
inclusion relation. By Remark 3.3 we know that V, € V, U ... U V,, so there
is a point (x) € V] such that (x) ¢ V, fori = 2, ..., r. By hypothesis, for ¢ transcen-
dental over k(x) it follows that (zx) € & so (&x) € V, for some i. Specializing to
t = 1, we conclude that (x) € V,, so i = 1, which proves that V; is homoge-
neous, as was to be shown.

Let V be a variety defined over k by a prime ideal pin k[X]. Let (x) be a
generic point of V over k. We say that (x) is homogeneous (over k) if for ¢
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transcendental over k(x), the point (£x) is also a point of V, or in other words,
(tx) is a specialization of (x). If this is the case, then we have an isomorphism

klxy, ..., x,] = kltx, ..., tx,],

which is the identity on & and sends x; on tx;. It then follows from the preceding
propositions that the following conditions are equivalent for a variety V over k:

V is homogeneous.
The prime ideal of V in k[X] is homogeneous.
A generic point of V over k is homogeneous.

A homogeneous ideal always has a zero, namely the origin (0), which will
be called the trivial zero. We shall want to know when a homogeneous algebraic
set has a non-trivial zero (in some algebraically closed field). For this we introduce
the terminology of projective space as follows. Let (x) be some point in A” and
A an element of some field containing k(x). Then we denote by (Ax) the point
(Axq, . .., Ax,). Two points (x), (y) € A*(K) for some field K are called equivalent
if not all their coordinates are 0, and there exists some element A € K, A # 0,
such that (Ax) = (y). The equivalence classes of such points in A*(K) are called
the points of projective space in K. We denote this projective space by P*1,
and the set of points of projective space in K by P*~1(K). We define an algebraic
space in projective space to be the non-trivial zeros of a homogeneous ideal,
with two zeros identified if they differ by a common non-zero factor.

Algebraic spaces over rings

As we shall see in the next section, it is not sufficient to look only at ideals
in k[X] for some field k. Sometimes, even often, one wants to deal with polynomial
equations over the integers Z, for several reasons. In the example of the next
sections, we shall find universal conditions over Z on the coefficients of a system
of forms so that these forms have a non-trivial common zero. Furthermore, in
number theory—diophantine questions—one wants to consider systems of equa-
tions with integer coefficients, and to determine solutions of these equations in
the integers or in the rational numbers, or solutions obtained by reducing mod
p for a prime p. Thus one is led to extend the notions of algebraic space and
variety as follows. Even though the applications of the next section will be over
Z, we shall now give general definitions over an arbitrary commutative ring R.

Let f(X) € R[X] = R[X;, ..., X,] be a polynomial with coefficients in R.
Let R — A be an R-algebra, by which for the rest of this chapter we mean a
homomorphism of commutative rings. We obtain a corresponding homomorphism

R[X] = A[X]

on the polynomial rings, denoted by f +— f, whereby the coefficients of f, are
the images of the coefficients of f under the homomorphism R — A. By a zero
of fin A we mean a zero of f, in A. Similarly, let S be a set of polynomials in
R[X]. By a zero of S in A we mean a common zero in A of all polynomials
f e S. Let abe the ideal generated by S in R[X]. Then a zero of § in A is also
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a zero of ain A. We denote the set of zeros of S in A by ¥ (A), so that we have
Z5(A) = %,(A).

We call ¥,(A) an algebraic set over R. Thus we have an association
X AP % (A)

which to each R-algebra associates the set of zeros of a in that algebra. We note
that R-algebras form a category, whereby a morphism is a ring homomorphism
¢:A — A making the following diagram commutative:

A

7

R ¢

Ny

Then it is immediately verified that & is a functor from the category of R-
algebras to the category of sets. Again we call & an algebraic space over R.

If R is Noetherian, then R[X] is also Noetherian (Chapter IV, Theorem 4.1),
and so if a is an ideal, then there is always some finite set of polynomials §
generating the ideal, so #¢ = ¥, .

The notion of radical of a is again defined as the set of polynomials
h € R[X] such that kN €a for some positive integer N. Then the following state-
ment is immediate:

Suppose that R is entire. Then for every R-algebra R — K with a field K, we
have

g{a (K) = g{ rad(a)(K)-

We can define affine space A" over R. Its points consist of all n-tuples
(xqy,...,x,) = (x) with x; in some R-algebra A. Thus A” is again an association

A — A"(A)

from R-algebras to sets of points. Such points are in bijection with
homormorphisms

RIX]— A

from the polynomial ring over R into A. In the next section we shall limit ourselves
to the case when A = K is a field, and we shall consider only the functor
K — AYK) for fields K. Furthermore, we shall deal especially with the case
when R = Z, so Z has a unique homomorphism into a field K. Thus a field K
can always be viewed as a Z-algebra.

Suppose finally that R is entire (for simplicity). We can also consider projective
space over R. Let a be an ideal in R[X]. We define a to be homogeneous just as
before. Then a homogeneous ideal in R[X] can be viewed as defining an algebraic
subset in projective space P*(K) for each field K (as an R-algebra). If R = Z,
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then a defines an algebraic subset in P"(K) for every field K. Similarly, one can
define the notion of a homogeneous algebraic space % over R, and over the
integers Z a fortiori. Propositions 2.6 and 2.7 and their proofs are also valid in
this more general case, viewing ¥ = % as a functor from fields K to sets P"*(K).

If a is a prime ideal p, then we call %, an R-variety V. If R is Noetherian,
so R[X] is Noetherian, it follows as before that an algebraic space ¥ over R is
a finite union of R-varieties without inclusion relations. We shall carry this out
in §5, in the very general context of commutative rings. Just as we did over a
field, we may form the factor ring Z[X]/p and the image (x) of (X) in this factor
ring is called a generic point of V.

§3. PROJECTIONS AND ELIMINATION

Let (W) =W,,..., W, and (X) = (X;, ..., X,) be two sets of independent
variables. Then ideals in k[W, X] define algebraic spaces in the product space
A™*"_ Let a be an ideal in k[W, X]. Let a; = a N k[W]. Let % be the algebraic
space of zeros of a and let &, be the algebraic space of zeros of a;. We have
the projection

pr:¥mtn — %m or pr: A" — A"

which maps a point (w, x) to its first set of coordinates (w). It is clear that
pr% C %,. In general it is not true that pr % = ¥ ,. For example, the ideal p gen-
erated by the single polynomial W3 — W, X, = 0 is prime. Its intersection with
k[W;, W,] is the zero ideal. But it is not true that every point in the affine
(W;, W,)-space is the projection of a point in the variety %,. For instance, the
point (1, 0) is not the projection of any zero of p. One says in such a case that
the projection is incomplete. We shall now consider a situation when such a
phenomenon does not occur.

In the first place, let p be a prime ideal in k[W, X] and let V be its variety
of zeros. Let (w, x) be a generic point of V. Let p; = p N k[W]. Then (w) is a
generic point of the variety V| which is the algebraic space zeros of p,. This is
immediate from the canonical injective homomorphism

KW1/p, — kIW, X1/p.

Thus the generic point (w) of V; is the projection of the generic point (w, x) of
V. The question is whether a special point (w') of V is the projection of a point
of V.

In the subsequent applications, we shall consider ideals which are homo-
geneous only in the X-variables, and similarly algebraic subsets which are homo-
geneous in the second set of variables in A”.
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An ideal a in k[W, X] which is homogeneous in (X) defines an algebraic space
in A" x P""1_If V is an irreducible component of the algebraic set defined by
a, then we may view V as a subvariety of A™ X P"~!, Let p be the prime ideal
associated with V. Then p is homogeneous in (X). Let p; = p N k[W]. We shall
see that the situation of an incomplete projection mentioned previously is elim-
inated when we deal with projective space.

We can also consider the product A” X P”, defined by the zero ideal over
Z. For each field K, the set of points of A” x P" in K is A™(K) X P"K). An
ideal ain Z[W, X], homogeneous in (X), defines an algebraic space ¥ =%, in
A™ X P". We may form its projection ¥, on the first factor. This applies in
particular when a is a prime ideal p, in which case we call % an arithmetic
subvariety of A" X P”. Its projection V] is an arithmetic subvariety of A™,
associated with the prime ideal p; = pN Z{W].

Theorem 3.1. Let (W)= W,..., W,)and (X) = (X,,..., X,) be indepen-
dent families of variables. Let p be a prime ideal in k[W, X] (resp. Z[W, X])
and assume p is homogeneous in (X). Let V be the corresponding irreducible
algebraic space in A™ X P! Let p; = pN k[W] (resp. p N Z[W]), and let
V| be the projection of V on the first factor. Then V] is the algebraic space
of zeros of p; in A™.

Proof. Let V have generic point (w, x). We have to prove that every zero
(w') of p, in a field is the projection of some zero (w', x’) of p such that not all
the coordinates of (x') are equal to 0. By assumption, not all the coordinates of
(x) are equal to 0, since we viewed V as a subset of A” X P~ ! For definiteness,
say we are dealing with the case of a field k. By Chapter VII, Proposition 3.3,
the homomorphism k[w] — k[w'] can be extended to a place ¢ of k(w, x).
By Proposition 3.4 of Chapter VII, there is some coordinate x; such that
@(x;/x)) # »foralli=1,..., n Weletx] = @(x;/x;) for all i to conclude the
proof. The proof is similar when dealing with algebraic spaces over Z, replacing
kby Z.

Remarks. Given the point (w') € A™, the point (w’, x') in A" X P"~! may
of course not lie in k(w'). The coordinates (x') could even be transcendental
over k(x"). By any one of the forms of the Hilbert Nullstellensatz, say Corollary
1.3 of Theorem 1.1, we do know that (x") could be found algebraic over k(w'),
however. In light of the various versions of the Nullstellensatz, if a set of forms
has a non-trivial common zero in some field, then it has a non-trivial common
zero in the algebraic closure of the field generated by the coefficients of the
forms over the prime field. In atheorem such as Theorem 1.2 below, the conditions
on the coefficients for the forms to have a non-trivial common zero (or a zero
in projective space) are therefore also conditions for the forms to have such a
zero in that algebraic closure.

We shall apply Theorem 3.1 to show that given a finite family of homogeneous
polynomials, the property that they have a non-trivial common zero in some
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algebraically closed field can be expressed in terms of a finite number of universal
polynomial equations in their coefficients. We make this more precise as follows.

Consider a finite set of forms (f) = (f;,..., f,). Letd,,..., d, be their
degrees. We assume d; = 1 for i = 1, ..., r. Each f; can be written
(n) fi = 2w My X)

where M(,)(X) is a monomial in (X) of degree d;, and w; (,, is a coefficient. We
shall say that (f) has a non-trivial zero (x) if (x) # (0) and f;(x) = O for all i.
We let (w) = (w), be the point obtained by arranging the coefficients w; (,, of
the forms in some definite order, and we consider this point as a point in some
affine space A™, where m is the number of such coefficients. This integer m is
determined by the given degrees d, . . ., d,. In other words, given such degrees,
the set of all forms (f) = (f;, ..., f,) with these degrees is in bijection with
the points of A™.

Theorem 3.2. (Fundamental theorem of elimination theory.) Given
degrees d,, . .., d,, the set of all forms (fi, ..., f,) in n variables having a
non-trivial common zero is un algebraic subspace of A™ over Z.

Proof. Let (W) = (W, ) be a family of variables independent of (X). Let
(F) = (F, ..., F,) be the family of polynomials in Z[W, X] given by

@) FA(W, X) = 2 W, (,M(,,(X)

where M(,,(X) ranges over all monomials in (X) of degree d;, so (W) = (W)g.
We call F|, ..., F, generic forms. Let

a = ideal in Z[W, X] generated by F,, ..., F,.

Then a is homogeneous in (X). Thus we are in the situation of Theorem 3.1,
with adefining an algebraic space @ in A™ X P”~ !, Note that (w) is a specialization
of (W), or, as we also say, (f) is a specialization of (F). As in Theorem 3.1,
let @, be the projection of @ on the first factor. Then directly from the definitions,
(f) has a non-trivial zero if and only if (w); lies in @, so Theorem 3.2 is a
special case of Theorem 3.1.

Corollary 3.3. Let (f) be a family of n forms in n variables, and assume
that (w) is a generic point of A", i.e. that the coefficients of these forms are
algebraically independent. Then (f) does not have a non-trivial zero.

Proof. There exists a specialization of () which has only the trivial zero,
namely f; = X%,..., f, = X4,

Next we follow van der Waerden in showing that @ and hence @ are irreducible.

Theorem 3.4. The algebraic space @ of forms having a non-trivial common
zero in Theorem 3.2 is actually a Z-variety, i.e. it is irreducible. The prime ideal



IX, §3 PROJECTIONS AND ELIMINATION 391

p in ZIW, X] associated with @ consists of all polynomials G(W, X) € Z[W, X]
such that for some index j there is an integer s = 0 satisfying

*), XiG(W, X) = 0 mod (F,, ..., F); that is, X}GW, X) € a.

If relation (*) holds for one index j, then it holds for every j = 1,..., n. (Of
course, the integer s depends on j.)

Proof. Weconstructa generic pointof @. We select any one of the variables,
say X,, and rewrite the forms F; as follows:

F(W,X)=F§ + Z,X%

where F¥ is the sum of all monomials except the monomial containing Xgi.
The coefficients (W) are thereby split into two families, which we denote by (Y)
and (Z), where (Z) = (Z,,..., Z,) are the coefficients of (X',..., Xdr)in
(Fy,..., F,), and (Y) is the remaining family of coefficients of F¥,..., F¥.
We have (W) = (¥, Z), and we may write the polynomials F; in the form

F(W,X) = F(Y, Z, X) = F¥(Y, X) + Z,X%.

Corresponding to the variables (¥, X) we choose quantities (y, x) algebraically
independent over Z. We let

3) z; = —F¥y, x)/x% = =F¥y, x/x,).

We shall prove that (y, z, x) is a generic point of Q.
From our construction, it is immediately clear that F;(y, z, x) = O for all i,
and consequently if G(W, X) € Z[W, X] satisfies (*), then G(y, z, x) = 0.
Conversely, let G(Y, Z, X) € Z[Y, Z, X] = Z[W, X] satisfy G(y, z, x) = 0.
From Taylor’s formula in several variables we obtain

G(Y,Z,X)=G(Y,..., —F{/X3 + Z, + F¥/X%, ..., X)
G(Y, —F§/X&, X) + 2 (Z; + F¥/X4yH, (Y, Z, X),

where the sum is taken over terms having one factor (Z;, + F ,*/Xzi) to some
power w; > 0, and some factor H,,, in Z[Y, Z, X]. From the way (y, z, x) was
constructed, and the fact that G(y, z, x) = 0, we see that the first term vanishes,
and hence

G(Y,Z, X)= Z Z; + F;“/XZ")“"HW(Y, Z, X).
Clearing denominators of X, for some integer s we get
X,G(Y, Z, X) = 0mod (F, ..., F),
or in other words, (*)4 1s satisfied. This concludes the proof of the theorem.
Remark. Of course the same statement and proof as in Theorem 3.4

holds with Z replaced by a field k. In that case, we denote by q, the ideal in
k[W, X] generated by the generic forms, and similarly by p, the associated prime
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ideal. Then
ag) =a; N kW] and  p,; = p, N K[W].

The ideal p in Theorem 3.4 will be called the prime associated with the
ideal of generic forms. The intersection p; = pN Z[W] will be called the prime
elimination ideal of these forms. If @ denotes as before the zeros of p (or of
a), and @, is its projection on the first factor, then p, is the prime associated
with @,. The same terminology will be used if instead of Z we work over a
field k. (Note: homogeneous elements of p; have been called inertia forms in
the classical literature, following Hurwitz. I am avoiding this terminology be-
cause the word “inertia” is now used in a standard way for inertia groups as in
Chapter VII, §2.) The variety of zeros of p; will be called the resultant vari-
ety. It is determined by the given degrees d,, ..., d,, so we could denote it
by @,(d,, ..., d,).

Exercise. Show that if p is the prime associated with the ideal of generic
forms, then p N Z = (0) is the zero ideal.

Theorem 3.5. Assume r = n, so we deal with n forms in n variables. Then
P, is principal, generated by a single polynomial, so @, is what one calls a
hypersurface. If (w) is a generic point of @, over a field k, then the transcen-
dence degree of k(w) over kism — 1.

Proof. We prove the second statement first, and use the same notation as in
the proof of Theorem 3.4. Let u; = x;/x,. Then u, = 1 and (y), (uy, ..., u,—y)
are algebraically independent. By (3), we have z; = —F¥(y, u), so

k(w) = k(y, z) C k(y, w),

and so the transcendence degree of k(w) over k is = m — 1. We claim that this
transcendence degree is m — 1. It will suffice to prove that u;, ..., u,_ are
algebraic over k(w) = k(y, z). Suppose this is not the case. Then there exists a
place ¢ of k(w, u), which is the identity on k(w) and maps some u; on . Select
an index g such that (u;/u,) is finite foralli = 1,...,n — 1. Let v; = u;/u,
and v} = ¢(y;/ ug). Denote by Y, the coefficient of Xgi in F; and let Y* denote
the variables (Y) from which Yigo- .., ¥q are deleted. By (3) we have for
i=1,...,mn
0 = yudt + z; + FF*(y*% u)

=Yg T Z.—/uf,"’ + FFAy% u/uy).
Applying the place yields
0 =y, + FF*O% v").

In particular, y;, € k(y*, v') foreachi = 1, ..., n. But the transcendence degree
of k(v') over k is at most n — 1, while the elements (y,,, ..., Yng Y*) are
algebraically independent over k, which gives a contradiction proving the
theorem.
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Remark. There is a result (I learned it from [Jo 80]) which is more precise
than Theorem 3.5. Indeed, let @ as in Theorem 3.5 be the variety of zeros of
p, and @, its projection. Then this projection is birational in the following sense.
Using the notation of the proof of Theorem 3.5, the result is not only that k(w)
has transcendence degree m — 1 over k, but actually we have

Q(y, 2) = Q(w) = Q(y, u).

Proof. Let p; = (R), so R is the resultant, generating the principal ideal
p;. We shall need the following lemma.

Lemma 3.6. There is a positive integer s with the following properties. Fix
an index i with 1 =i = n — 1. For each pair of n-tuples of integers = 0

(C!) = (al""’ an) and (B) = (Bl""’ Bn)
with |a| = |B| = d,, we have

oR R
£ . — G =
X,,(M(a)(X) W M g(X) aW,-,(a) =0 mod (F, ..., F,).

To see this, we use the fact from Theorem 3.4 that for some s,
X)RW) = Q\F, + -+ + Q,F, with Q; € Z[W, X].
Differentiating with respect to W, 5 we get
dR

n W QiMp(X) mod (F, ..., F,),
and similarly
X g = QM@(X) mod (Fi..... F,).

We multiply the first congruence by M(,)(X) and the second by M g,(X), and we
subtract to get our lemma.

From the above we conclude that

R R
M0 i ~ Mo 3w,

vanishes on @, i.e. on the point (w, u), after we put X, = 1. Then we select
MyX) = X% and Mp(X) = X4 'X, fori=1,...,n—1,

and we see that we have the rational expression

_ 3R/3Wip

u;‘aR/aWi.(a) yfori=1,...,n—-1,

WM=w)

thus showing that Q(x) C Q(w), as asserted.
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We note that the argument also works over the prime field of characteristic
p. The only additional remark to be made is that there is some partial derivative
R/ dW, () Which does not vanish on (w). This is a minor technical matter, which
we leave to the reader.

The above argument is taken from [Jo 80], Proposition 3.3.1. Jouanolou links
old-time results as in Macaulay [Ma 16] with more recent techniques of com-
mutative algebra, including the Koszul complex (which will be discussed in
Chapter XXI). See also his monographs [Jo 90], [Jo 91].

Still following van der Waerden, we shall now give a fairly explicit deter-
mination of the polynomial generating the ideal in Theorem 3.5. We deal with
the generic forms F;(W, X) (i = 1, ..., n). According to Theorem 3.5, the ideal
p; is generated by a single element. Because the units in Z[W] consist only of
*1, it follows that this element is well defined up to a sign. Let

RW) = R(F,,..., F,)

be one choice of this element. Later we shall see how to pick in a canonical way
one of these two possible choices. We shall prove various properties of this

element, which will be called the resultant of Fi, ..., F,.
Foreachi=1,..., n welet D, be the product of the degrees with d; omitted;
that is,

A
Di=d, -d; - d,.

We let d be the positive integer such that d — 1 = 2, (d; — 1).

Lemma 3.7. Given one of the indices, say n, there is an element R (W) lying
in py, satisfying the following properties.

(a) For each i, R,(W)X¢ = 0 mod (F,, ..., F,) in Z[W, X].

(b) For each i, R,(W) is homogeneous in the set of variables (W, (,)), and is of
degree D, in (W, ,)), i.e. in the coefficient of F,,.

(c) As a polynomial in ZIW], R,(W) has content 1, i.e. is primitive.

Proof. The polynomial R, (W) will actually be explicitly constructed. Let
M ,(X) denote the monomials of degree || = d. We partition the indexing set
S = {o} into disjoint subsets as follows.

Let S; = {0} be the set of indices such that M, (X) is divisible by X¢!.

Let S, = {o,} be the set of indices such that M, (X) is divisible by X§2 but
not by X%1.

Let S, = {0,} be the set of indices such that M,, (X) is divisible by X% but
not by X%, ..., X%y,
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Then § is the disjoint union of S;, ..., S,. Write each monomial as follows:

M, (X) = H, (X)X{* so degH, =d—d,

M, (X) = H, (X)Xd» so deg H, =d—d,
Then the number of polynomials
HyFy,...,H; F,(withay€S§,,...,0,€8,)

is precisely equal to the number of monomials of degree d. We let R, be the
determinant of the coefficients of these polynomials, viewed as forms in (X) with
coefficients in Z[W]. Then R, = R, (W) € Z[W]. We claim that R, (W) satisfies
the properties of the lemma.

First we note that if g, € S, then H, (X) is divisible by a power of X; at
mostd; — 1, fori =1,..., n — 1. On the other hand, the degree of H, (X) in
X,, is determined by the condition that the total degree is d — d,,. Hence S, has
exactly D, elements. It follows at once that R, (W) is homogeneous of degree D,
in the coefficients of F,, i.e. in (W,,.(»). From the construction it also follows

that R, is homogeneous in each set of variables (W, (,)) for each i = 1,...,
n—1.
If we specialize the forms F; (i = 1, ..., n) to X%, then R, specializes to 1,

and hence R,, # 0 and R, is primitive. For each o; we can write

HoF; = 2 Coq(WMX),

where M ,(X) (o € S) ranges over all monomials of degree d in (X), and Co o (W)
is one of the variables (W). Then by definition

R, (W) = det(Cy 5, (W)g,cs))> - - - » Coo,(W)o,es,y) = det(C).

where oy € §, ..., 0, € §, indexes the columns, and o indexes the rows. Let
B = C be the matrix with components in Z[W, X] such that

BC = det(C)I = R,I.
(See Chapter XIII, Corollary 4.17.) Then for each o, we have

R, (WM ,(X) = 2, ZS B; . F..
i oeS;
Given i, we take for o the index such that M,(X) = X¢ in order to obtain the
first relation in Lemma 3.7. By Theorem 3.4, we conclude that R,,(W) € p,. This
concludes the proof of the lemma.

Of course, we picked an index 7 to fix ideas. For each i one has a polynomial
R; satisfying the analogous properties, and in particular homogeneous of degree
D; in the variables (W, (,,) which are the coefficients of the form F;.
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Theorem 3.8. Let R be the resultant of the n generic forms F; over Z, in n
variables. Then R satisfies the following properties.

(a) R is the greatest common divisor in Z[W] of the polynomials R,, ..., R,,.
(b) R is homogeneous of degree D in the coefficients of F;.
(c) Let F; = ... + W, 4, X%, so W, (4, is the coefficient of X%. Then R contains
the monomial
n
D;
+ E[l WPy,
Proof. The idea will be to specialize the forms Fi, ..., F, to products of

generic linear forms, where we can tell what is going on. For that we need a
lemma of a more general property eventually to be proved. We shall use the
following notation. If fi, ..., f, are forms with coefficients (w), then we write

R(fl" c . 7fn) = R(W)

Lemma 3.9. Ler G, H be generic independent forms with deg(GH) = d,.
Then R(GH, F,, . .., F,)) is divisible by R(G, F,, ..., F,))RH, F,, ..., F,).

Proof. By Theorem 3.5, there is an expression

XR(F,,...,F,) = QF, + - + Q,F, with Q; € Z[W, X].

Let W, Wy, We,, ..., Wg,_be the coefficients of G, H, F,, . . ., F, respectively,
and let (w) be the coefficients of GH, F,, ..., F,. Then

Rw) = R(GH, F,, ..., F,),
and we obtain

XaR(w) = Qi(w, X)GH + Qr(w, X)F; + Q,(w, X)F,.

Hence R(GH, F,, . .., F,) belongs to the elimination ideal of G, F,, ..., F, in
the ring Z[Wg;, Wy, Wr,, ..., W ], and similarly with H instead of G. Since
Wy is a family of independent variables over Z[Wg, Wg,, ..., Wg |, it follows
that R(G, F,, . .., F,) divides R(GH, F,, . . ., F,) in that ring, and similarly for
RH, F,, ..., F,). But (Ws;) and (Wy) are independent sets of variables, and so

R(G,F,,...,F,),RH,F,,...,F,) are distinct prime elements in that ring, so
their product divides R(GH, F,, . . ., F,) as stated, thus proving the lemma.
Lemma 3.9 applies to any specialized family of polynomials g, &, f;, ...,

S, with coefficients in a field k. Observe that for a system of s linear forms in
n variables, the resultant is simply the determinant of the coefficients. Thus if
L,,...,L,are generically independent linear forms in the variables X, ..., X,,,
then their resultant R(L,, . . ., L,) is homogeneous of degree 1 in the coefficients
of L; for each i. We apply Lemma 3.9 to the case of forms f,, . . ., f,—1, which
are products of generically independent linear forms. By Lemma 3.9 we conclude
that for this specialized family of form, their resultant has degree at least D, in
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the coefficients of F,, so for the generic forms F, ..., F, their resultant has
degree at least D, in the coefficients of F,. Similarly R(F), ..., F,) has degree
at least D, in the coefficients of F; for each i. But R divides the n elements
R,(W), ..., R, (W) constructed in Lemma 3.7. Therefore we conclude that R has
degree exactly D; in the coefficients of F;. By Theorem 3.5, we know that R
divides each R;. Let G be the greatest common divisor of R, ..., R, in Z{W].
Then R divides G and has the same degree in each set of variables (W, ,)) for
i = 1,..., n. Hence there exists ¢ € Z such that G = ¢cR. We must have
¢ = =*1, because, say, R, is primitive in Z{W]. This proves (a) and (b) of the
theorem.

As to the third part, we specialize the forms to f; = X%,i = 1,..., n. Then
R, specializes to 1, and since R divides R/, it follows that R itself specializes to
+1. Since all coefficients of the forms specialize to O except those which we
denoted by W, 4, it follows that R(W) contains the monomial which is the product
of these variables to the power D;, up to the sign =1. This proves (c¢), and
concludes the proof of Theorem 3.8.

We can now normalize the resultant by choosing the sign such that R contains
the monomial

n
—_ Di
M = z=l—[1 Wi,(di)’
with coefficient +1. This condition determines R uniquely, and we then denote
R also by
R = Res(Fy, ..., F).

Given forms f,, . . ., f, with coefficients (w) in a field K (actually any commu-
tative ring), we can then define their resultant

Res(fl’ LR ’fn) = R(W)

with the normalized polynomial R. With this normalization, we then have a
stronger result than Lemma 3.9.

Theorem 3.10. Let f| = gh be a product of forms such that deg(gh) = d,.
Let f,, ..., f, be arbitrary forms of degrees d,, . . ., d,. Then

Res(gh, fo, ..., fu) = Res(g, fo, .. ., fIRes(h, fo, ..., fo).

Proof. From the fact that the degrees have to add in a product of polynomials,
together with Theorem 3.8(a) and (b), we now see in Lemma 3.9 that we must
have the precise equality in what was only a divisibility before we knew the
precise degree of R in each set of variables.

Theorem 3.10 is very useful in proving further properties of the determinant,
because it allows a reduction to simple cases under factorization of polynomials.
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For instance one has:

Theorem 3.11. Let Fy, ..., F, be the generic forms in n variables, and let
Fy, ..., F, be the forms obtamed by substituting X, = 0, so that F,, ..., F,_,
are the generic forms in n — 1 variables. Let n = 2. Then

ReS(Fl, ey Fn—l’ Xﬁ") = ReS(E, ey I_:n,l)d".

Proof. By Theorem 3.10 it suffices to prove the assertion when d, = 1. By
Theorem 3.4, foreachi = 1,..., n — 1 we have an expression

*) XiRes(Fy, ..., F,o, X,) = QiFy + - + @y 1F 0 + QX

with Q; € Z[W, X] (depending on the choice of i). The left-hand side can be
written as a polynomial in the coefficients of F, ..., F,_, with the notation

XSRWg,, ooy We 1y ) = XEP(Wp ..., Wi ) = XSP(W™D), say;

n-1’
thus in the generic linear form in X, ..., X,, we have specialized all the coef-
ficients to O except the coefficient of X,, which we have specialized to 1. Sub-
stitute X, = O in the right side of (*). By Theorem 3.4, we conclude that
P(WD) lies in the resultant ideal of F,,..., F, ;, and therefore
Res(Fy,..., F,_,) divides P(W® 1), By Theorem 3.8 we know that
P(W™D) has the same homogeneity degree in Wz, (i = 1,..., n — 1)

as Res(F,, ..., F,_;). Hence there is ¢ € Z such that
cRes(Fy,...,F,_) = Res(Fy,..., F,_;, X,)).
One finds ¢ = 1 by specializing Fi, ..., F,_; to X{', ..., X% respectively,

thus concluding the proof.
The next basic lemma is stated for the generic case, for instance in Macaulay

[Ma 16], and is taken up again in [Jo 90], Lemma 5.6.

Lemma 3.12. Let A be a commutative ring. Let fi, ..., f,, 91, ..., g, be
homogeneous polynomials in AlX,, ..., X,]. Assume that

G- 9) T f)
as ideals in A[X). Then
Res(f}, ..., f,) divides Res(g,, ..., g,) in A.
Proof. Express each g; = > h;;f; with h;; homogeneous in A[X]. By spe-
cialization, we may then assume that g; = > H,;F; where H,; and F; have alge-

braically independent coefficients over Z. By Theorem 3.4, for each i we have
a relation

XiRes(gy,--.59,) = 0197 + -+ + 0,9, with some Q; € Z[Wy, W],



IX, §3 PROJECTIONS AND ELIMINATION 399

where Wy;, W, denote the independent variable coefficients of the polynomials
H;; and F; respectively. In particular,

(*) X! Res(gy, ..., g,) =0mod (F, ..., F)ZIW,, W, X].

Note that Res(g,,..., g,) = P(Wy, Wr) € Z[Wy, Wg] is a polynomial with
integer coefficients. If (wy) is a generic point of the resultant variety @; over
Z, then P(Wy, wp) = 0 by (*). Hence Res(Fy, . . ., F,) divides P(Wy, Wy), thus
proving the lemma.

Theorem 3.13. Let A be a commutative ring and let d,, . . ., d, be integers
= 1 as usual. Let f; be homogeneous of degree d; in A[X] = A[X,,..., X,].
Let d be an integer = 1, and let g;, . .., g, be homogeneous of degree d in
A[X]. Then

fieg=f91,...,9,)

is homogeneous of degree dd;, and

Res(fi°g,...,f,09) = Res(gy,..., g)" @ Res(fy, ..., )"  inA.

Proof. We start with the standard relation of Theorem 3.4:
* XiRes(F},..., F,) =0mod (F,, ..., F)Z[W:, X].

We let G, . .., G, be independent generic polynomials of degree d, and let W
denote their independent variable coefficients. Substituting G, for X; in (*), we
find

GiRes(F,,...,F,)=0mod (F, ° G, ..., F,oGZ[Wy, Wg, X.

Abbreviate Res(F, ..., F,) by R(F), and let g; = G{R(F). By Lemma 3.12, it
follows that

Res(fi° G, ..., F, ° G) divides Res(GiR(F), . . ., GSR(F)) in Z[Wg, Ws].
By Theorem 3.10 and the homogeneity of Theorem 3.8(b) we find that

Res(GiR(F), ..., G3R(F)) = Res(Gy, ..., G,)™ Res(F,, ..., F,

DN

with integers M, N = 0. Since Res(G, . . ., G,) and Res(F, . . ., F,)) are distinct
prime elements in Z[W;, W] (distinct because they involve independent vari-
ables), it follows that

(**) Res(F,°G,...,F,°G) = ¢eRes(G,,..., G,)*Res(F,, ..., F,)"

with integers a, b = 0 and € = 1 or —1. Finally, we specialize F; to W.X% and
we specialize G; to U;X¢, with independent variables (W,, ..., W,, U,, ..., U,.
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Substituting in (**), we obtain

Res(W,U$X941, . .., W,Udnxddn)
= g Res(UiX4, ..., U, X% Res(W, X9, ..., W, Xdn)b,
By the homogeneity of Theorem 3.8(b) we get

; d: -1 -1 B
H(mUd,)dl-..d,.”d,,d" - EHU‘z‘in aHth_il.‘.d,...d,,b‘
1 14 1

From this we get at once € = | and a, b are what they are stated to be in the
theorem.

Corollary 3.14. Let C = (c;j) be a square matrix with coefficients in A. Let
fA(X) = F,(CX) (where CX is multiplication of matrices, viewing X as a column
vector). Then

Res(fy, ..., f,) = det(C)%4n Res(F,, ..., F,).

Proof. This is the case when d = 1 and g; is a linear form for each i.

Theorem 3.15. Let f,,..., f, be homogeneous in A[X], and suppose
d, = d; for all i. Let h; be homogeneous of degree d, — d; in A[X]. Then

n—1
Res(fis s focts fo + ;} hf) = Res(fi,. .., f,) in A.

Proof. We may assume f; = F; are the generic forms, H; are forms generic
independent from Fy,..., F,, and A = Z[W., Wy], where (Wp) and (Wy)
are the coefficients of the respective polynomials. We note that the ideals

(F,..., F,) and (F},..., F, + ZHij) are equal. From Lemma 3.12 we
j*n

conclude that the two resultants in the statement of the theorem differ by a factor
of 1 or —1. We may now specialize H;; to 0 to determine that the factor is +1,
thus concluding the proof.

Theorem 3.16. Let m be a permutation of {1, ..., n}, and let &(m) be its
sign. Then

Res(Fry, - - - » Fumy) = &(m)@-n Res(Fy, ..., F).

Proof. Again using Lemma 3.12 with the ideals (F;,..., F,) and
(Frays - - - » Fa(ny)» Which are equal, we conclude the desired equality up to a
factor 1, in Z[Ws]. We determine this sign by specializing F; to X%, and using
the multiplicativity of Theorem 3.10. We are then reduced to the case when
F; = X;, so a linear form; and we can apply Corollary 3.14 to conclude the proof.

The next theorem was an exercise in van der Waerden’s Moderne Algebra.
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Theorem 3.17. LetL,, ..., L,_, F be generic forms in n variables, such
thatL,, ..., L,_, are of degree 1, and F has degree d = d,,. Let
AG=1,...,n

be (—1)"/ times the j-th minor determinant of the coefficient matrix of the
forms (L, ..., L,_,). Then

Res(Ly, ..., L,_y, F) = F(A,, ..., A,).

Proof. We first claim that for all j = 1, ..., n we have the congruence
(*) XA — XA, =0mod (Ly,..., L, )Z[W, X],
where as usual, (W) are the coefficients of the forms L, ..., L,_,, F. To see

this, we consider the system of linear equations

WXy + -+ W, X, = LW X) - WX,

WXy ¥t WX = Lo W X) = W, X,

-1,n

If C = (C',..., C" ") is a square matrix with columns C/, then a solution of
a system of linear equations CX = C” satisfies Cramer’s rule

deet(Cl, o, Chy =de(CL...,Cn, L, CrT Y.

Using the fact that the determinant is linear in each column, (*) falls out.
Then from the congruence (*) it follows that

X4FAy, ..., A) = AFX,,...,X,)mod (L,,...,L,_)Z[W,X],
whence
X4F(Ay,...,A)=0mod (L,,...,L,_,, F).

Hence by Theorem 3.4 and the fact that Res(L,, ..., L,_, F) = R(W) generates
the elimination ideal, it follows that there exists ¢ € Z[W] such that

F(A,...,A) =cRes(L;,...,L,_,, F).

Since the left side is homogeneous of degree 1 in the coefficients W and homo-
geneous of degree d in the coefficients W, foreachi =1,...,n — 1, it follows
from Theorem 3.8 that ¢ € Z. Specializing L; to X; and F to X4 makes A; specialize
to 0 if j # n and A, specializes to 1. Hence the left side specializes to 1, and
so does the right side, whence ¢ = 1. This concludes the proof.
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§4. RESULTANT SYSTEMS

The projection argument used to prove Theorem 3.4 has the advantage of
constructing a generic point in a very explicit way. On the other hand, no explicit,
or even effective, formula was given to construct a system of forms defining
@,. We shall now reformulate a version of Theorem 3.4 over Z and we shall
prove it using a completely different technique which constructs effectively a
system of generators for an ideal of definition of the arithmetic variety @ in
Theorem 3.2.

Theorem 4.1. Givendegrees d,, ..., d, Z 1, and positive integers m, n. Let
(W) = (W, (,,) be the variables as in §3, (2) viewed as algebraically independent
elements over the integers L. There exists an effectively determinable finite
number of polynomials R, (W) € Z[W] having the following property. Let ( 1d)
be as in (1), a system of forms of the given degrees with coefficients (w) in
some field k. Then (f) has a non-trivial common zero if and only if R,(w) = 0
for all p.

A finite family {R,} having the property stated in Theorem 4.1 will be called
a resultant system for the given degrees. According to van der Waerden
(Moderne Algebra, first and second edition, §80), the following technique of
proof using resultants goes back to Kronecker elimination, and to a paper of
Kapferer (Uber Resultanten und Resultantensysteme, Sitzzungsber. Bayer. Akad.
Miinchen 1929, pp. 179-200). The family of polynomials {R,(W)} is called a
resultant system, because of the way they are constructed. They form a set of
generators for an ideal b; such that the arithmetic variety @, is the set of zeros
of b,. I don’t know how close the system constructed below is to being a set of
generators for the prime ideal p, in Z[W] associated with @,. Actually we shall
not need the whole theory of Chapter IV, §10; we need only one of the char-
acterizing properties of resultants.
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Let p, g be positive integers. Let

fo
gy = wWoX{ + wX97'X, + - + w, X4

Il

be two generic homogeneous polynomials in Z[v, w, X, X5] = Z]v, wl[X]. In
Chapter IV, §10 we defined their resultant Res(f,, g,,) in case X, =1, but we
find it now more appropriate to work with homogeneous polynomials. For our
purposes here, we need only the fact that the resultant R(v, w) is characterized
by the following property. If we have a specialization (a, b) of (v, w) in a field
K, and if f,, f;, have a factorization

p
Ja = ag ljl X, — a,X;)

q
9y = by Hl X, — BiXy)
j=
then we have the symmetric expressions in terms of the roots:

Mmm=Ranp=%%§pm—@)

%U%@Ahﬂﬂw%ﬂmmn.

From the general theory of symmetric polynomials, it is a priori clear that
R(v, w) lies in Z[v, w], and Chapter IV, §10 gives an explicit representation

Cofy T Wo 8y = X579 'R(v, w)

where ¢, ,, and ¥, ,, € Z{v, w, X]. This representation will not be needed. The
next property will provide the basic inductive step for elimination.

Proposition 4.2. Let f,, g, be homogeneous polynomials with coefficients in
a field K. Then R(a, b) = 0 if and only if the system of equations

foX) =0, g,X)=0
has a non-trivial zero in some extension of K (which can be taken to be finite).

If ay = O then a zero of g, is also a zero of f,; and if by = O then a zero of f,
is also a zero of g,. If aghy # O then from the expression of the resultant as a
product of the difference of roots (a; — B;) the proposition follows at once.

We shall now prove Theorem 4.1 by using resultants. We do this by induction
on n.
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I

If n = 1, the theorem is obvious.

If n =2, r = 1, the theorem is again obvious, taking the empty set for (R,).
If n = 2, r = 2, then the theorem amounts to Proposition 4.2.

Assume now n = 2 and r > 2, so we have a system of homogeneous equations

0 =fX) =fX)=...=fX)

with (X) = (X,, X,). Let d; be the degree of f; and let 4 = max d;. We replace
the family {f(X)} by the family of all polynomials

fi(X)X4 4 and f£(X)X4 4, i=1,...,r.

These two families have the same sets of non-trivial zeros, so to prove Theorem
4.1 we may assume without loss of generality that all the polynomials fi, . . .,
/. have the same degree d.

With n = 2, consider the generic system of forms of degree d in (X):

4 F,(W,X)=0withi =1,..., r, in two variables (X) = (X;, X;),
where the coefficients of F; are W, ..., W, 4 so that

(W)=(WI’O,...,Wl,d,...,m’o,...,m,d).

The next proposition is a special case of Theorem 4.1, but gives the first step
of an induction showing how to get the analogue of Proposition 4.2 for such a
larger system. Let T,..., T, and U, ..., U, be independent variables over
Z[W, X]. Let Fy, ..., F, be the generic forms of §3, (2). Let

f=FWX)T, + -+ FW X)T,
g=FW,X)U, + -+ FW, XU,

so f, g € Z[W, T, U][X]. Then f, g are polynomials in (X) with coefficients in
Z[W, T, U]l. We may form their resultant

Res(f, g) € Z[W, T, U].

Thus Res( f, g) is a polynomial in the variables (7, U) with coefficients in Z[W].
We let (Q,(W)) be the family of coefficients of this polynomial.

Proposition 4.3.  The system {Q,, (W)} just constructed satisfies the property
of Theorem 4.1, i.e. it is a resultant system for r forms of the same degree d.

Proof. Suppose that there is a non-trivial solution of a special system
F(W, X) = 0 with (w) in some field k. Then (w, T, U) is a common non-trivial
zero of f, g, so Res(f, g) = 0 and therefore Q,(w) = O for all u. Conversely,
suppose that Q,(w) = 0 for all u. Let f(X) = Fy(w, X). We want to show
that f(X) fori = 1, ..., r have a common non-trivial zero in some extension of
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k. If all f; are O in k[X,, X,] then they have a common non-trivial zero. If, say,
f1 # 0 in k[X], then specializing T5,..., T, to 0 and T} to 1 in the resultant
Res(f, g), we see that

Res(f]’fZUZ + o +frUr) =0

as a polynomial in k[U,, . . ., U,]. After making a finite extension of k if neces-
sary, we may assume that f;(X) splits into linear factors. Let {a;} be the roots
of fi(X,, 1). Then some (¢;, 1) must also be a zero of LU, + -+ + fU,,
which implies that («;, 1) is a common zero of fi, ..., f, since U,, ..., U,
are algebraically independent over k. This proves Proposition 4.3.

We are now ready to do the inductive step with n > 2. Again, let
X =Fw, X)forj=1,...,r

be polynomials with coefficients (w) in some fields k.

Remark 4.4. There exists a non-trivial zero of the system
i=0G=1,...,n
in some extension of k if and only if there exist
& x, ) FO,...,0) and (x,, 1) ¥ (0, 0)

in some extension of k such that
filexy, ..., tx,_y,x,) =0fori=1,...,r.

So we may now construct the system (R,) inductively as follows.
Let T be a new variable, and let X"~V = (X,,..., X,,_,). Let

gz(st X(n_l)’ Sn7 T) = F‘z(“’y TX]’ L] TXn—l; Xn) € Z[W X(ngl)][Xn’ T]

Then g; is homogeneous in the two variables (X,,, 7). By the theorem for two
variables, there is a system of polynomials (Q,) in Z[W, X"~D] having the
property: if (w, X"~ V) is a point in a field K, then

gi(w, x"D X T) have a non-trivial common zero fori = 1,...,r.

S 0w, x""Dy = 0 for all .

Viewing each Q,, as a polynomial in the variables (X"~ 1), we decompose each
Q, as a sum of its homogeneous terms, and we let (Hy(W, X(*~1)) be the fam-
ily of these polynomials, homogeneous in (X"~1). From the homogeneity
property of the forms F; in (X), it follows that if ¢ is transcendental over K
and g;(w, x*~VD, X,, T) have a non-trivial common zero for j = 1,..., r
then g;(w, x"~D, X,, T) also have a non-trivial common zero. Therefore
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Q,(w, tx"~D) = 0 for all , and so Hy(w, x"~V) = 0. Therefore we may use the
family of polynomials (H,) instead of the family (Q,), and we obtain the property:
if (w, x""V) is a point in a field K, then

g:(w, "V, X, T) have a non-trivial common zero for i = 1,...,r
S Hy(w, x* D) = 0 for all A.

By induction on n, there exists a family (R,(W)) of polynomials in Z[W]
(actually homogeneous), having the property: if (w) is a point in a field K, then

H,(w, X"~ D) have a non-trivial common zero for all A
< R,(w) = 0 for all p.

In light of Remark 4.4, this concludes the proof of Theorem 4.1 by the resultant
method.

§6. SPEC OF A RING

We shall extend the notions of §2 to arbitrary commutative rings.

Let A be a commutative ring. By spec(A) we mean the set of all prime ideals
of A. An element of spec(A) is also called a point of spec(A).

If /e A, we view the set of prime ideals p of spec(4) containing f as the set
of zeros of f. Indeed, it is the set of p such that the image of f in the canonical

homomorphism
A— Alp

is 0. Let a be an ideal, and let % (a) (the set of zeros of a) be the set of all
primes of A containing a. Let a,b be ideals. Then we have:

Proposition 5.1.
(i) %(ab) = % (a) U Z(b).
(i) If {a;} is a family of ideals, then % (2qa;) = M2 (a;).
(iii)) We have % (a) C %(b) if and only if rad(a) D rad(b), where rad(a), the
radical of a, is the set of all elements x € A such that x" € a for some
positive integer n.

Proof. Exercise. See Corollary 2.3 of Chapter X.

A subset C of spec(A) is said to be closed if there exists an ideal a of 4 such
that C consists of those prime ideals p such that a = p. The complement of a
closed subset of spec(A4) is called an open subset of spec(4). The following
statements are then very easy to verify, and will be left to the reader.
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Proposition 5.2. The union of a finite number of closed sets is closed. The
intersection of an arbitrary family of closed sets is closed.

The intersection of a finite number of open sets is open. The union of an
arbitrary family of open sets is open.

The empty set and spec(A) itself are both open and closed.

If S is a subset of A4, then the set of prime ideals p € spec(4) such that S < p
coincides with the set of prime ideals p containing the ideal generated by S.

The collection of open sets as in Proposition 5.2 is said to be a topology on
spec(A), called the Zariski topology.

Remark. In analysis, one considers a compact Hausdorff space S. “Haus-
dorff” means that given two points P, Q there exists disjoint open sets Up, Uy
containing P and Q respectively. In the present algebraic context, the topology
is not Hausdorff. In the analytic context, let R be the ring of complex valued
continuous functions on §. Then the maximal ideals of R are in bijection with
the points of S (Gelfand-Naimark theorem). To each point P € §, we associate
the ideal M, of functions f such that f(P) = 0. The association P — Mp
gives the bijection. There are analogous results in the complex analytic case.
For a non-trivial example, see Exercise 19 of Chapter XII.

Let A, B be commutative rings and ¢: A — B a homomorphism. Then ¢
induces a map

@* = spec(p) = ¢~ ' :spec(B) — spec(A)
by

p— o ().

Indeed, it is immediately verified that ¢~ *(p) is a prime ideal of 4. Note however
that the inverse image of a maximal ideal of B is not necessarily a maximal ideal
of A. Example? The reader will verify at once that spec(¢) is continuous, in the
sense that if U is open in spec(B), then ¢~ '(U) is open in spec(A4).

We can then view spec as a contravariant functor from the category of
commutative rings to the category of topological spaces.

By a point of spec(A) in a field L one means a mapping

spec(¢) : spec(L) — spec(A)
induced by a homomorphism ¢ : 4 — L of 4 into L.
For example, for each prime number p, we get a point of spec(Z), namely

the point arising from the reduction map

7 — Z/pZ.
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The corresponding point is given by the reversed arrow,

spec(Z) « spec(Z/pZ).

As another example, consider the polynomial ring k[ X,, ..., X,] over a
field k. For each n-tuple (cy, ..., ¢,) in k*™ we get a homomorphism

o kX, ..., X,] >k

such that ¢ is the identity on k, and ¢(X,) = ¢; for all i. The corresponding
point is given by the reversed arrow

spec k[ X] <« spec(k?).

Thus we may identify the points in n-space k*™ with the points of spec k[ X]
(over k) in k*.

However, one does not want to take points only in the algebraic closure of
k, and of course one may deal with the case of an arbitrary variety V over k
rather than all of affine n-space. Thus let k[x|, ..., x,] be a finitely generated
entire ring over k with a chosen family of generators. Let V = spec k[x]. Let A
be a commutative k-algebra, corresponding to a homomorphism k£ — A. Then a
point of V in A may be described either as a homomorphism

¢ klx,..., x,] = A,
or as the reversed arrow
spec(A4) — spec(k|x])

corresponding to this homomorphism. If we put ¢; = ¢(x;), then one may call
(c) = (cy, ..., c,) the coordinates of the point in A. By a generic point of V
in a field K we mean a point such that the map ¢:k[x] — K is injective, i.e. an
isomorphism of k[x] with some subring of K.

Let A be a commutative Noetherian ring. We leave it as an exercise to
verify the following assertions, which translate the Noetherian condition into
properties of closed sets in the Zariski topology.

Closed subsets of spec(A) satisfy the descending chain condition, i.c., if

C,oC,oCy> -

is a descending chain of closed sets, then we have C, = C, ., for all sufficiently
large n. Equivalently, let {C,},.; be a family of closed sets. Then there exists a
relatively minimal element of this family, that is a closed set C;; in the family
such that for all i, if C; = C;, then C; = C; . The proof follows at once from
the corresponding properties of ideals, and the simple formalism relating
unions and intersections of closed sets with products and sums of ideals.
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A closed set C is said to be irreducible if it cannot be expressed as the union
of two closed sets

C#C,u(,
with C; # Cand C, # C.

Theorem 5.3. Let A be a Noetherian commutative ring. Then every closed
set C can be expressed as a finite union of irreducible closed sets, and this
expression is unique if in the union

C=C,u---uC(,
of irreducible closed sets, we have C; & C;if i # j.

Proof. We give the proof as an example to show how the version of Theorem
2.2 has an immediate translation in the more general context of spec(A). Suppose
the family of closed sets which cannot be represented as a finite union of irreducible
ones is not empty. Translating the Noetherian hypothesis in this case shows that
there exists a minimal such set C. Then C cannot be irreducible, and we can
write C as a union of closed sets

C=Cuc(C,

with C' # C and C” # C. Since C' and C” are strictly smaller than C, then we
can express C’ and C” as finite unions of irreducible closed sets, thus getting a
similar expression for C, and a contradiction which proves existence.

As to uniqueness, let

C=C,u---u(C=ZuU---UZ

be an expression of C as union of irreducible closed sets, without inclusion
relations. For each Z; we can write

Z;=Z;nCHu---u(Z;nC)

Since each Z; N C; is a closed set, we must have Z; = Z; n C,; for some i. Hence
Z; = C, for some i. Similarly, C; is contained in some Z,. Since there is no
inclusion relation among the Z s, we must have Z; = C; = Z,. This argument
can be carried out for each Z; and each C;. This proves that each Z; appears
among the C/’s and each C; appears among the Z;’s, and proves the uniqueness
of our representation. This proves the theorem.

Proposition 5.4. Let C be a closed subset of spec(A). Then C is irreducible
if and only if C = %(p) for some prime ideal p.
Proof. Exercise.

More properties at the same basic level will be given in Exercises 14-19.
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EXERCISES
Integrality

1. (Hilbert-Zariski) Let k be a field and let V be a homogeneous variety with generic
point (x) over k. Let & be the algebraic set of zeros in k? of a homogeneous ideal in
k[X] generated by forms f,, ..., f, in k[X]. Prove that V N % has only the trivial
zero if and only if each x; is integral over the ring k[ f(x)] = k[fi(x), ..., f,(x)].
(Compare with Theorem 3.7 of Chapter VII.)

2. Let f;, ..., f, be forms in n variables and suppose n > r. Prove that these forms
have a non-trivial common zero.

3. Let R be an entire ring. Prove that R is integrally closed if and only if the local ring
R, is integrally closed for each’prime ideal p.

4. Let R be an entire ring with quotient field K. Let ¢ be transcendental over K. Let
() = 2 a,t’ € K[1]. Prove:
(a) If f(¢) is integral over R[¢], then all g, are integral over R.
(b) If R is integrally closed, then R[?] is integrally closed.

For the next exercises, we let R = k[x] = k[X]/p, where p is a homogeneous prime
ideal. Then (x) is a homogeneous generic point for a k-variety V. We let I be the integral
closure of R in k(x). We assume for simplicity that k(x) is a regular extension of k.

5. Let z = 2, ¢;x; with ¢; € k, and z # 0. If k[x] is integrally closed, prove that k[x/z]
is integrally closed.

6. Define an element f € k(x) to be homogeneous if f(zx) = t%(x) for ¢ transcendental
over k(x) and some integer d. Let f € I. Show that f can be written in the form
f= Ef; where each f; is homogeneous of degree i = 0, and where also f; € I. (Some
f; may be 0, of course.)

We let R,, denote the set of elements of R which are homogeneous of degree m.
Similarly for 7,,. We note that R, and /,, are vector spaces over k, and that R (resp. I)
is the direct sum of all spaces R,, (resp. I,,) form = 0, 1, ... This is obvious for R, and
it is true for I because of Exercise 6.

7. Prove that I can be written as a sum / = Rz, + - -+ + Rz,, where each z; is homoge-
neous of some degree d,.

8. Define an integer m = 1 to be well behaved if I, = I, for all integers g = 1. If
R = I, then all m are well behaved. In Exercise 7, suppose m = max d;. Show that
m is well behaved.

9. (a) Prove that I, is a finite dimensional vector space over k. Let wy, ..., wy, be a
basis for I,, over k. Then k[1,] = k[w].
(b) If m is well behaved, show that k[1,,] is integrally closed.
(c) Denote by k((x)) the field generated over k by all quotients x; /xj with x; # 0,
and similarly for k((w)). Show that k((x)) = k((w)).

(If you want to see Exercises 4—9 worked out, see my Introduction to Algebraic
Geometry, Interscience 1958, Chapter V.)
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Resultants

10. Prove that the resultant defined for n forms in n variables in §3 actually coincides
with the resultant of Chapter IV, or §4 when n = 2.

11. Let a = (f},..., f,) be a homogeneous ideal in k[X|, ..., X,) (with k algebraically
closed). Assume that the only zeros of a consist of a finite number of points
xM), ..., (x) in projective space P*~!, so the coordinates of each x(/’ can be
taken in k. Let u,, ..., u, be independent variables and let

LX) =wuX, + - +uX,
Let R\(u), . .., R(u) € klu] be a resultant system for f, ..., f,, L,.
(a) Show that the common non-trivial zeros of the system R;(u) (i = 1,..., s)
in k are the zeros of the polynomial
[T L, € kiu).
J
(b) Let D(u) be the greatest common divisor of R,(u), ..., Ry(u) in k[u]. Show
that there exist integers m; = 1 such that (up to a factor in k)
d
D) = [T Laym.
j=1
[See van der Waerden, Moderne Algebra, Second Edition, Volume II, §79.]
12. For forms in 2 variables, prove directly from the definition used in §4 that one has
Res(fg, k) = Res(f, h) Res(g, )
Res(f, g) = (—1)e/)deIRes(g, f).
13. Let k be a field and let Z — k be the canonical homomorphism. If F € Z[W, X], we

denote by F the image of F in k[W, X] under this homomorphism. Thus we get R,
the image of the resultant R.
(a) Show that R is a generator of the prime ideal Pr.1 of Theorem 3.5 over the
field k. Thus we may denote R by R,.
(b) Show that R is absolutely irreducible, and so is R,. In other words, R, is
irreducible over the algebraic closure of k.

Spec of a ring

14.

Let A be a commutative ring. Define spec(A) to be connected if spec(A) is not the
union of two disjoint non-empty closed sets (or equivalently, spec(A) is not the union
of two disjoint, non-empty open sets).
(a) Suppose that there are idempotents e, e, in A (that is €} = e, and €3 = ¢,),
# 0, 1, such that eje, = 0 and ¢; + ¢, = 1. Show that spec(A) is not
connected.
(b) Conversely, if spec(A) is not connected, show that there exist idempotents
as in part (a).

In either case, the existence of the idempotents is equivalent with the fact that the
ring A is a product of two non-zero rings, A = A; X A,.
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15.

16.

17.

18.

19.

Prove that the Zariski topology is compact, in other words: let {U};.; be a family of
open sets such that

U U; = spec(A).

Show that there is a finite number of open sets U,,, ..., U; whose union is spec(A4).
[Hint: Use closed sets, and use the fact that if a sum of ideals is the unit ideal, then 1
can be written as a finite sum of elements.]

Let f be an element of A. Let S be the multiplicative subset {1, £, f2, f3,...} con-
sisting of the powers of f. We denote by A the ring S™'A as in Chapter II, §3.
From the natural homomorphism A — A, one gets the corresponding map
spec(Ap) — spec(A).
(a) Show that spec(A;) maps on the open set of points in spec(A) which are not
zeros of f.
(b) Given a point p € spec(A), and an open set U containing p, show that there
exists f such that p € spec(4p) C U.

Let U; = spec(Ay) be a finite family of open subsets of spec(A) covering spec(A).
For each i, let a,/f; € A;. Assume that as functions on U; N U; we have a;/f; = a;/f;
for all pairs i, j. Show that there exists a unique element a € A such that a = a,/f;
in A for all /.

Let k be a field and let k[x,,..., x,] = A C K be a finitely generated subring of
some extension field K. Assume that k(x,, . . ., x,,) has transcendence degree r. Show
that every maximal chain of prime ideals

ADP,DP,D...DP, {0},
with P, # A, P, # P,y,, P, # {0}, must have m = r.

Let A = Z[x,, ..., x,] be a finitely generated entire ring over Z. Show that every
maximal chain of prime ideals as in Exercise 18 must have m = r + 1. Here, r =
transcendence degree of Q(x, .. ., x,) over Q.



CHAPTER X

Noetherian Rings and
Modules

This chapter may serve as an introduction to the methods of algebraic geometry
rooted in commutative algebra and the theory of modules, mostly over a Noeth-
erian ring.

§1. BASIC CRITERIA

Let 4 be a ring and M a module (i.e., a left A-module). We shall say that
M is Noetherian if it satisfies any one of the following three conditions:

(1) Every submodule of M is finitely generated.

(2) Every ascending sequence of submodules of M,

MicM,cM;c...

5

such that M; # M, is finite.

(3) Every non-empty set S of submodules of M has a maximal element
(i.e., a submodule M such that for any element N of § which contains
M, we have N = M,).

We shall now prove that the above three conditions are equivalent.
(1) = (2) Suppose we have an ascending sequence of submodules of M as
above. Let N be the union of all the M; (i = 1,2,...). Then N is finitely gen-

erated, say by elements x,, ..., x,, and each generator is in some M;. Hence
there exists an index j such that
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Then
Xpyevns X, €My N =(xy,..., %,

whence equality holds and our implication is proved.

(2) = (3) Let N, be an element of S. If N, is not maximal, it is properly
contained in a submodule N,. If N, is not maximal, it is properly contained in
a submodule N,. Inductively, if we have found N; which is not maximal, it is
contained properly in a submodule N;,,. In this way we could construct an
infinite chain, which is impossible.

(3)= (1) Let N be a submodule of M. Let a,e N. If N # <a,), then
there exists an element a, € N which does not lie in {a,). Proceeding induc-
tively, we can find an ascending sequence of submodules of N, namely

{apy = <ag,a,) ©<ag,a;,a,) < -~

where the inclusion each time is proper. The set of these submodules has a
maximal element, say a submodule {ag, a,, ..., a,), and it is then clear that
this finitely generated submodule must be equal to N, as was to be shown.

Proposition 1.1. Let M be a Noetherian A-module. Then every submodule
and every factor module of M is Noetherian.

Proof. Our assertion is clear for submodules (say from the first condi-
tion). For the factor module, let N be a submodule and f: M — M/N the
canonical homomorphism. Let M, = M, < --- be an ascending chain of sub-
modules of M/N and let M; = f ~Y(M,). Then M; =« M, < ---is an ascending
chain of submodules of M, which must have a maximal element, say M,, so
that M; = M, for r 2 i. Then f(M;) = M, and our assertion follows.

Proposition 1.2. Let M be a module, N a submodule. Assume that N and
M/N are Noetherian. Then M is Noetherian.

Proof. With every submodule L of M we associate the pair of modules
L— (L n N,(L + N)/N).

We contend: If E = F are two submodules of M such that their associated
pairs are equal, then E = F. To see this, let x € F. By the hypothesis that
(E + N)/N = (F + N)/N there exist elements u, ve N and y € E such that
y+u=x+ v Then

x—y=u—veFNN=EnN.

Since y € E, it follows the x € E and our contention is proved. If we have an
ascending sequence

E, cE,c.--
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then the associated pairs form an ascending sequence of submodules of N and
M/N respectively, and these sequences must stop. Hence our sequence
E, c E, --- also stops, by our preceding contention.

Propositions 1.1 and 1.2 may be summarized by saying that in an exact
sequence 0 > M' > M - M” — 0, M is Noetherian if and only if M' and M”
are Noetherian.

Corollary 1.3. Let M be a module, and let N, N' be submodules. If
M = N + N and if both N, N' are Noetherian, then M is Noetherian. A
finite direct sum of Noetherian modules is Noetherian.

Proof. We first observe that the direct product N x N’ is Noetherian
since it contains N as a submodule whose factor module is isomorphic to N’,
and Proposition 1.2 applies. We have a surjective homomorphism

NxN->M

such that the pair (x, x) with x € N and x" € N" maps on x + x". By Prop-
osition 1.1, it follows that M is Noetherian. Finite products (or sums) follow
by induction.

A ring A is called Noetherian if it is Noetherian as a left module over itself.
This means that every left ideal is finitely generated.
Proposition 1.4. Let A be a Noetherian ring and let M be a finitely generated
module. Then M is Noetherian.
Proof. Letx,,...,x, be generators of M. There exists a homomorphism
fiAxAx - xA->M
of the product of 4 with itself » times such that
flay,...,a) =a;x;, +--- + a,x,.
This homomorphism is surjective. By the corollary of the preceding proposition,
the product is Noetherian, and hence M is Noetherian by Proposition 1.1.
Proposition 1.5. Let A be a ring which is Noetherian, and let ¢ : A — B be
a surjective ring-homomorphism. Then B is Noetherian.

Proof. Letb; c-.-cb, < --- be an ascending chain of left ideals of B
and let a; = ¢~ !(b;). Then the q; form an ascending chain of left ideals of A
which must stop, say at a,. Since ¢(a;) = b, for all i, our proposition is proved.

Proposition 1.6. Let A be a commutative Noetherian ring, and let S be a
multiplicative subset of A. Then S™'A is Noetherian.

Proof. We leave the proof as an exercise.
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Examples. In Chapter IV, we gave the fundamental examples of Noeth-
erian rings, namely polynomial rings and rings of power series. The above
propositions show how to construct other examples from these, by taking factor
rings or modules, or submodules.

We have already mentioned that for applications to algebraic geometry, it is
valuable to consider factor rings of type k[X]/a, where a is an arbitrary ideal.
For this and similar reasons, it has been found that the foundations should be
laid in terms of modules, not just ideals or factor rings. Notably, we shall first
see that the prime ideal associated with an irreducible algebraic set has an analogue
in terms of modules. We shall also see that the decomposition of an algebraic
set into irreducibles has a natural formulation in terms of modules, namely by
expressing a submodule as an intersection or primary modules.

In §6 we shall apply some general notions to get the Hilbert polynomial of
a module of finite length, and we shall make comments on how this can be
interpreted in terms of geometric notions. Thus the present chapter is partly
intended to provide a bridge between basic algebra and algebraic geometry.

§2. ASSOCIATED PRIMES

T hroughout this section, we let A be a commutative ring. Modules and homo-
morphisms are A-modules and A-homomorphisms unless otherwise specified.

Proposition 2.1. Let S be a multiplicative subset of A, and assume that S
does not contain 0. Then there exists an ideal of A which is maximal in the
set of ideals not intersecting S, and any such ideal is prime.

Proof. The existence of such an ideal p follows from Zorn’s lemma (the
set of ideals not meeting S is not empty, because it contains the zero ideal, and is
clearly inductively ordered). Let p be maximal in the set. Leta, be A, abe p,
but a ¢ p and b ¢ p. By hypothesis, the ideals (a, p) and (b, p) generated by a
and p (or b and p respectively) meet S, and there exist therefore elements
5,5 €8,¢,¢,x,x €A,p,p €p such that

s=ca+xp and s =cb+xp.
Multiplying these two expressions, we obtain
ss' = cc'ab + p”

with some p” € p, whence we see that ss’ lies in p. This contradicts the fact
that p does not intersect S, and proves that p is prime.

An element a of A is said to be nilpotent if there exists an integer n = 1 such
that a" = 0.
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Corollary 2.2. An element a of A is nilpotent if and only if it lies in every
prime ideal of A.

Proof. If a" = 0, then a" € p for every prime p, and hence aep. If a” # 0
for any positive integer n, we let S be the multiplicative subset of powers of a,
namely {1, a, a%, ...}, and find a prime ideal as in the proposition to prove the
converse.

Let a be an ideal of 4. The radical of a is the set of all a € 4 such that g" € a
for some integer n = 1, (or equivalently, it is the set of elements a € A whose
image in the factor ring A/a is nilpotent). We observe that the radical of a is an
ideal, for if a" = 0 and b™ = 0 then (a + b)* = 0 if k is sufficiently large: In the
binomial expansion, either a or b will appear with a power at least equal to
nor m.

Corollary 2.3. An element a of A lies in the radical of an ideal a if and only
if it lies in every prime ideal containing a.

Proof. Corollary 2.3 is equivalent to Corollary 2.2 applied to the ring A/a.

We shall extend Corollary 2.2 to modules. We first make some remarks on
localization. Let S be a multiplicative subset of 4. If M is a module, we can
define S™'M in the same way that we defined S~ '4. We consider equivalence
classes of pairs (x,s) with xe M and se S, two pairs (x,s) and (x, s") being
equivalent if there exists s; € S such that s,(s'x — sx’) = 0. We denote the
equivalence class of (x, s) by x/s, and verify at once that the set of equivalence
classes is an additive group (under the obvious operations). It is in fact an
A-module, under the operation

(a, x/s) — ax/s.

We shall denote this module of equivalence classes by S™'M. (We note that
S™!'M could also be viewed as an S~ ' 4-module.)

If p is a prime ideal of 4, and S is the complement of p in 4, then S™'M is
also denoted by M.

It follows trivially from the definitions that if N — M is an injective homo-
morphism, then we have a natural injection S™!N — S~ 'M. In other words, if
N is a submodule of M, then S™'N can be viewed as a submodule of S~ M.
If x € N and s € S, then the fraction x/s can be viewed as an element of S™!N
or ST'M. If x/s = 0 in S™'M, then there exists s, € S such that s,x = 0, and
this means that x/s is also 0 in S™'N. Thus if p is a prime ideal and N is a sub-
module of M, we have a natural inclusion of N, in M_. We shall in fact identify
N, as a submodule of M, . In particular, we see that M is the sum of its sub-
modules (A4x),, for x € M (but of course not the direct sum).

Let x e M. The annihilator a of x is the ideal consisting of all elements
a € A such that ax = 0. We have an isomorphism (of modules)

A/a® Ax
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under the map

a — ax.

Lemma 2.4. Let x be an element of a module M, and let a be its annihilator.
Let p be a prime ideal of A. Then (Ax), # 0 if and only if p contains a.

Proof. The lemma is an immediate consequence of the definitions, and
will be left to the reader.

Let a be an element of 4. Let M be a module. The homomorphism

X+ ax, xeM

will be called the principal homomorphism associated with a, and will be de-
noted by a,,. We shall say that a,, is locally nilpotent if for each x € M there
exists an integer n(x) = 1 such that a"®x = 0. This condition implies that
for every finitely generated submodule N of M, there exists an integer n = 1
such that a"N = 0: We take for n the largest power of a annihilating a finite
set of generators of N. Therefore, if M is finitely generated, ay, is locally
nilpotent if and only if it is nilpotent.

Proposition 2.5. Let M be a module, ae A. Then a,, is locally nilpotent
if and only if a lies in every prime ideal p such that M, # 0.

Proof. Assume that a, is locally nilpotent. Let p be a prime of 4 such
that M, # 0. Then there exists x € M such that (4x), # 0. Let n be a positive
integer such that a"x = 0. Let a be the annihilator of x. Then a" € q, and hence
we can apply the lemma, and Corollary 4.3 to conclude that a lies in every prime
p such that M, # 0. Conversely, suppose ay, is not locally nilpotent, so there
exists x € M such that @"x = 0 for all n = 0. Let S = {1, a, 4%,...}, and
using Proposition 2.1 let p be a prime not intersecting S. Then (Ax), # 0, so
M, # 0 and a ¢ p, as desired.

Let M be a module. A prime ideal p of A will be said to be associated with
M if there exists an element x € M such that p is the annihilator of x. In par-
ticular, since p # A4, we must have x # 0.

Proposition 2.6. Let M be a module # 0. Let p be a maximal element in the
set of ideals which are annihilators of elements x € M, x # 0. Then p is prime.

Proof. Let p be the annihilator of the element x # 0. Then p # A. Let
a,be A, abep, a¢p. Then ax # 0. But the ideal (b, p) annihilates ax, and
contains p. Since p is maximal, it follows that b € p, and hence p is prime.

Corollary 2.7. If A is Noetherian and M is a module ¥ 0, then there exists
a prime associated with M.

Proof. The set of ideals as in Proposition 2.6 is not empty since M + 0,
and has a maximal element because A is Noetherian.
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Coroilary 2.8. Assume that both A and M are Noetherian, M # 0. Then
there exists a sequence of submodules

M=M,oM,>---5M,=0

such that each factor module M;/M;,  is isomorphic to A/p; for some
prime p;.

Proof. Consider the set of submodules having the property described in
the corollary. It is not empty, since there exists an associated prime p of M,
and if p is the annihilator of x, then Ax &~ A/p. Let N be a maximal element in
the set. If N # M, then by the preceding argument applied to M/N, there exists
a submodule N’ of M containing N such that N'/N is isomorphic to A/p for
some p, and this contradicts the maximality of N.

Proposition 2.9. Let A be Noetherian, and a€ A. Let M be a module.
Then a,, is injective if and only if a does not lie in any associated prime of M.

Proof. Assume that a,, is not injective, so that ax = 0 for some x € M,
x # 0. By Corollary 2.7, there exists an associated prime p of Ax, and a is an
element of p. Conversely, if a,, is injective, then a cannot lie in any associated
prime because a does not annihilate any non-zero element of M.

Proposition 2.10. Let A be Noetherian, and let M be a module. Let a € A.
The following conditions are equivalent:

(1) ayy is locally nilpotent.
(i1) a lies in every associated prime of M.
(ii1) a lies in every prime p such that M, # 0.

If p is a prime such that M, # 0, then p contains an associated prime of M.

Proof. The fact that (i) implies (ii) is obvious from the definitions, and
does not need the hypothesis that 4 is Noetherian. Neither does the fact that
(iii) implies (i), which has been proved in Proposition 2.5. We must therefore
prove that (ii) implies (iii) which is actually implied by the last statement. The
latter is proved as follows. Let p be a prime such that M, # 0. Then there exists
x € M such that (Ax), # 0. By Corollary 2.7, there exists an associated prime
q of (Ax), in A. Hence there exists an element y/s of (A4x),, with y € Ax,
s €p,and y/s # 0, such that q is the annihilator of y/s. It follows that q < p,
for otherwise, there exists b € q, b ¢ p, and 0 = by/s, whence y/s = 0, contra-
diction. Let b, ..., b, be generators for q. For each i, there exists s; € A,
s; & p, such that s;b;y = 0 because b;y/s = 0. Lett = s, --- 5,. Then it is
trivially verified that q is the annihilator of ty in A. Herice q < p, as desired.

Let us define the support of M by
supp(M) = set of primes p such that M_ # 0.



420 NOETHERIAN RINGS AND MODULES X, §2

We also have the annihilator of M,

ann(M) = set of elements a € A such that aM = 0.
We use the notation

ass(M) = set of associated primes of M.
For any ideal a we have its radical,

rad(a) = set of elements a € A such that a" € a for some integer n = 1.

Then for finitely generated M, we can reformulate Proposition 2.10 by the
following formula:

rad@ann(M))= () p= () »p.

p esupp(M) p € ass(M)

Corollary 2.11. Let A be Noetherian, and let M be a module. T he following
conditions are equivalent

(i) There exists only one associated prime of M.

(i1) We have M # 0, and for every a € A, the homomorphism a,, is injective,
or locally nilpotent.

If these conditions are satisfied, then the set of elements a€ A such that ay
is locally nilpotent is equal to the associated prime of M.

Proof. Immediate consequence of Propositions 2.9 and 2.10.

Proposition 2.12. Let N be a submodule of M. Every associated prime of
N is associated with M also. An associated prime of M is associated with N
or with M/N.

Proof. The first assertion is obvious. Let p be an associated prime of M,
and say p is the annihilator of the element x # 0. If Ax " N = 0, then Ax is
isomorphic to a submodule of M/N, and hence pis associated with M /N. Suppose
Ax NN # 0. Lety = ax € N with a € A and y ¥ 0. Then p annihilates y.
We claim p = ann(y). Let b € A and by = 0. Then ba € p but a ¢ p, so
b € p. Hence p is the annihilator of y in A, and therefore is associated with
N, as was to be shown.
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§3. PRIMARY DECOMPOSITION

We continue to assume that A is a commutative ring, and that modules (resp.
homomorphisms) are A-modules (resp. A-homomorphisms), unless otherwise
specified.

Let M be a module. A submodule Q of M is said to be primary if @ # M,
and if given a € 4, the homomorphism a,, is either injective or nilpotent.
Viewing A4 as a module over itself, we see that an ideal q is primary if and only
if it satisfies the following condition:

Givena,be A, abe q and a ¢ q, then b" € q for somen = 1.

Let Q be primary. Let p be the ideal of elements a € 4 such that ay, is
nilpotent. Then p is prime. Indeed, suppose that a, be A, abep and a ¢ p.
Then-a,,, is injective, and consequently djyo is injective for all n 2 1. Since
(ab)y,p is nilpotent, it follows that by, must be nilpotent, and hence that b € p,
proving that p is prime. We shall call p the prime belonging to Q, and also say
that Q is p-primary.

We note the corresponding property for a primary module Q with prime p:

Letb € Aand x € M be such that bx € Q. If x € Q then b € p.

Examples. Let nt be a maximal ideal of A and let q be an ideal of A such
that m* C q for some positive integer k. Then q is primary, and m belongs to
q. We leave the proof to the reader.

The above conclusion is not always true if m is replaced by some prime ideal
p. For instance, let R be a factorial ring with a prime element ¢. Let A be the
subring of polynomials f(X) € R[X] such that

fX)y=ay+a X+ ...
with a; divisible by 7. Let p = (¢X, X%, X3). Then p is prime but
p? = (£2X7% X3 X%
is not primary, as one sees because X2 ¢ p? but t* ¢ p2 for all k=1, yet
12X?%ep?
Proposition 3.1. Let M be a module, and Q,, . . ., Q, submodules which are
p-primary for the same prime p. Then Q, N --- n Q, is also p-primary.

Proof. Let Q=0Q,n---nQ,. Letaep. Letn;besuchthat(ay,,)" =0
foreachi = 1,...,r and let n be the maximum of n, ..., n,. Then ap = 0,
so that ay, is nilpotent. Conversely, suppose a¢ p. Let xe M, x ¢ Q; for
some j. Then a"x ¢ Q; for all positive integers n, and consequently a,, is
injective. This proves our proposition.
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Let N be a submodule of M. When N is written as a finite intersection of
primary submodules, say

N=Q1m"'mQra

we shall call this a primary decomposition of N. Using Proposition3.1, we
see that by grouping the Q, according to their primes, we can always obtain
from a given primary decomposition another one such that the primes belonging
to the primary ideals are all distinct. A primary decomposition as above such
that the prime ideals p,, ..., p, belonging to Q, ..., @, respectively are distinct,
and such that N cannot be expressed as an intersection of a proper subfamily
of the primary ideals {Q,, ..., Q,} will be said to be reduced. By deleting some
of the primary modules appearing in a given decomposition, we see that if N
admits some primary decomposition, then it admits a reduced one. We shall
prove a result giving certain uniqueness properties of a reduced primary
decomposition.

Let N be a submodule of M and let x > x be the canonical homomorphism.
Let Q be a submodule of M = M/N and let Q be its inverse image in M. Then
directly from the definition, one sees that Q is primary if and only if Q is primary;
and if they are primary, then the prime belonging to Q is also the prime belonging
to Q. Furthermore, if N = Q; N ... N Q, is a primary decomposition of N in
M, then

©=0,N...N0,

is a primary decomposition of (0) in M, as the reader will verify at once from
the definitions. In addition, the decomposition of N is reduced if and only if the
decomposition of (0) is reduced since the primes belonging to one are the same
as the primes belonging to the other.

Let 9, n---nQ, =N be a reduced primary decomposition, and let p;
belong to Q;. If p; does not contain p; (j # i) then we say that p, is isolated.
The isolated primes are therefore those primes which are minimal in the set
of primes belonging to the primary modules Q;.

Theorem 3.2. Let N be a submodule of M, and let
N=0,nnQ=0in-nQ,

be a reduced primary decomposition of N. Then r =s. The set of primes
belonging to Q,,..., 0, and Q}, ..., Q. is the same. If {py,..., P} is the
set of isolated primes belonging to these decompositions, then Q; = Q; for
i=1,..., m, in other words, the primary modules corresponding to isolated
primes are uniquely determined.

Proof. The uniqueness of the number of terms in a reduced decomposition
and the uniqueness of the family of primes belonging to the primary components
will be a consequence of Theorem 3.5 below.
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There remains to prove the uniqueness of the primary module belonging
to an isolated prime, say p,. By definition, for each j = 2, ..., r there exists
ajep;anda;¢ p;. Leta = a, ---a, be the product. Then a € p; for all j > 1,
but a ¢ p,. We can find an integer n = 1 such that Ay, =0forj=2,...,r
Let

N, = set of x € M such that a"x € N.

We contend that Q, = N,. This will prove the desired uniqueness. Let x € Q,.
Then a"xeQ, n---nQ, =N, so xe N,. Conversely, let xe N,, so that
a'x € N, and in particular a"x € Q,. Since a ¢ p,, we know by definition that
a0, 18 injective. Hence x € Q,, thereby proving our theorem.

Theorem 3.3. Let M be a Noetherian module. Let N be a submodule of
M. Then N admits a primary decomposition.

Proof. We consider the set of submodules of M which do not admit a
primary decomposition. If this set is not empty, then it has a maximal element
because M is Noetherian. Let N be this maximal element. Then N is not
primary, and there exists a € A such that a,,,y is neither injective nor nilpotent.
The increasing sequence of modules

Ker ay y < Ker ajyy = Kerayy < -+

stops, say at aj,y. Let ¢:M/N — M/N be the endomorphism ¢ = aj,y.
Then Ker ¢? = Ker ¢. Hence 0 = Ker ¢ n Im ¢ in M/N, and neither the
kernel nor the image of ¢ is 0. Taking the inverse image in M, we see that N is
the intersection of two submodules of M, unequal to N. We conclude from the
maximality of N that each one of these submodules admits a primary de-
composition, and therefore that N admits one also, contradiction.

We shall conclude our discussion by relating the primes belonging to a
primary decomposition with the associated primes discussed in the previous
section.

Proposition 3.4. Let A and M be Noetherian. A submodule Q of M is
primary if and only if M/Q has exactly one associated prime p, and in that
case, p belongs to Q, i.e. Q is p-primary.

Proof. Immediate consequence of the definitions, and Corollary 2.11.

Theorem 3.5. Let A and M be Noetherian. The associated primes of M
are precisely the primes which belong to the primary modules in a reduced

primary decomposition of 0 in M. In particular, the set of associated primes
of M is finite.

Proof. Let
0=0,n"nQ,
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be a reduced primary decomposition of 0 in M. We have an injective homo-
morphism

M- @M/Qi.

By Proposition 2.12 and Proposition 3.4, we conclude that every associated
prime of M belongs to some Q;. Conversely, let N =0, n---n Q,. Then
N # 0 because our decomposition is reduced. We have

N=N(NnQ)~(N+Q,)/Q =M/,

Hence N is isomorphic to a submodule of M/Q,, and consequently has an
associated prime which can be none other than the prime p, belonging to Q,.
This proves our theorem.

Theorem 3.6. Let A be a Noetherian ring. Then the set of divisors of zero
in A is the set-theoretic union of all primes belonging to primary ideals in a
reduced primary decomposition of 0.

Proof. Ancelement of a € A is a divisor of 0 if and only if a4 is not injective.
According to Proposition 2.9, this is equivalent to a lying in some associated
prime of A (viewed as module over itself). Applying Theorem 3.5 concludes the
proof.

§4. NAKAYAMA’S LEMMA

We let A denote a commutative ring, but not necessarily Noetherian.

When dealing with modules over a ring, many properties can be obtained
first by localizing, thus reducing problems to modules over local rings. In practice,
as in the present section, such modules will be finitely generated. This section
shows that some aspects can be reduced to vector spaces over a field by reducing
modulo the maximal ideal of the local ring. Over a field, a module always has
a basis. We extend this property as far as we can to modules finite over a local
ring. The first three statements which follow are known as Nakayama’s lemma.

Lemmad.1. Let a be an ideal of A which is contained in every maximal ideal
of A. Let E be a finitely generated A-module. Suppose that aE = E. Then
E = {0}.
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Proof. Induction on the number of generators of E. Let x,,..., x, be
generators of E. By hypothesis, there exist elements a,, ..., g, € a such that

Xy =a;x; + -+ agX,,

so there is an element a (namely a,) in a such that (1 + a)x; lies in the module
generated by the first s — 1 generators. Furthermore 1 + a is a unit in A,
otherwise 1 + a is contained in some maximal ideal, and since a lies in all
maximal ideals, we conclude that 1 lies in a maximal ideal, which is not possible.
Hence x; itself lies in the module generated by s — 1 generators, and the proof
is complete by induction.

Lemma 4.1 applies in particular to the case when A is a local ring, and
a = m is its maximal ideal.

Lemma 4.2. Let A be alocal ring, let E be a finitely generated A-module, and
F a submodule. If E = F + mE, then E = F.

Proof. Apply Lemma 4.1 to E/F.

Lemma 4.3. Let A be a local ring. Let E be a finitely generated A-module.
If x, ..., x, are generators for E mod mE, then they are generators for E.

Proof. Take F to be the submodule generated by x,, ..., x,.

Theorem 4.4. Let A be a local ring and E a finite projective A-module.

Then E is free. In fact, if x,, ..., x, are elements of E whose residue classes
Xy, ..., X, are a basis of E/mE over A/m, then x,, ..., x, are a basis of E
over A. If x,,...,x, are such that X,, ..., X, are linearly independent over

A/m, then they can be completed to a basis of E over A.

Proof. 1 am indebted to George Bergman for the following proof of the
first statement. Let F be a free module with basis ¢;, . .., e,, and let f: F > E
be the homomorphism mapping e; to x;. We want to prove that f is an isomor-
phism. By Lemma 4.3, f is surjective. Since E is projective, it follows that f
splits, i.e. we can write F = Py @® P;, where Py = Ker f and P, is mapped
isomorphically onto E by f. Now the linear independence of x, . . ., x, mod
mE shows that

P() cmF = mP()@mPl.

Hence Py = mPy. Also, as a direct summand in a finitely generated module, Py
is finitely generated. So by Lemma 4.3, Py = (0) and f is an isomorphism, as
was to be proved.

As to the second statement, it is immediate since we can complete a given
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sequence xj, . . . , X, with X;, . . ., X, linearly independent over A/m, to a
sequence Xxi,...,X, with Xj,...,X, linearly independent over 4/m, and then
we can apply the first part of the proof. This concludes the proof of the theorem.

Let E be a module over a local ring A with maximal ideal m. We let
E(m) = E/mE. If f:E - F is a homomorphism, then f induces a homo-
morphism

Jimy : E(m) —> F(m).

If f is surjective, then it follows trivially that f, is surjective.

Proposition 4.5. Let . E — F be a homomorphism of modules, finite over a
local ring A. Then:
(i) If fim is surjective, so is f.
(i) Assume f is injective. If f,,, is surjective, then f is an isomorphism.
(iii) Assume that E, F are free. If f, is injective (resp. an isomorphism) then
[ is injective (resp. an isomorphism).

Proof. The proofs are immediate consequences of Nakayama'’s lemma and
will be left to the reader. For instance, in the first statement, consider the exact
sequence

E—-F - F/Imf -0

and apply Nakayama to the term on the right. In (iii), use the lifting of bases
as in Theorem 4.4.

§5. FILTERED AND GRADED MODULES

Let A be a commutative ring and E a module. By a filtration of E one means
a sequence of submodules

E=E,oE, oE,>---2E, o

Strictly speaking, this should be called a descending filtration. We don’t
consider any other.

Example. Let a be an ideal of a ring 4, and E an A-module. Let
E, = a"E.
Then the sequence of submodules {E,} is a filtration.

More generally, let {E,} be any filtration of a module E. We say that it is
an a-filtration if aF, — E, , , for all n. The preceding example is an a-filtration.
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We say that an a-filtration is a-stable, or stable if we have aE, = E,, | for alln
sufficiently large.

Proposition 5.1. Let {E,} and {E,} be stable a-filtrations of E. Then there
exists a positive integer d such thai

E,,s<E, and E,,,cE,
foralln =z 0.

Proof. It suffices to prove the proposition when E, = a"E. Since
aE, c E,,, for all n, we have a"E < E,. By the stability hypothesis, there
exists d such that

E,..=0dE,caE,

which proves the proposition.

A ring A is called graded (by the natural numbers) if one can write A as a
direct sum (as abelian group),

A= PA4,,
n=0

such that for all integers m, n = 0 we have 4,4,, < 4,,,. It follows in par-
ticular that A, is a subring, and that each component 4, is an 4,-module.

Let 4 be a graded ring. A module E is called a graded module if E can be
expressed as a direct sum (as abelian group)

E=®E,
n=0

such that A, E,, < E,,,,. Inparticular, E, is an A,-module. Elements of E, are
then called homogeneous of degree n. By definition, any element of E can be
written uniquely as a finite sum of homogeneous elements.

Example. Let k be a field, and let X, ..., X, be independent variables.
The polynomial ring A = k[X,,..., X,] is a graded algebra, with k = 4,.
The homogeneous elements of degree n are the polynomials generated by the
monomials in X, ..., X, of degree n, that is

Xy X* with Y d =n
i=0
An ideal I of A is called homogeneous if it is graded, as an 4-module. If this
is the case, then the factor ring A/I is also a graded ring.

Proposition 5.2. Let A be a graded ring. Then A is Noetherian if and only
if Ay is Noetherian, and A is finitely generated as A,-algebra.



428 NOETHERIAN RINGS AND MODULES X, §5

Proof. A finitely generated algebra over a Noetherian ring is Noetherian,
because it is a homomorphic image of the polynomial ring in finitely many
variables, and we can apply Hilbert’s theorem.

Conversely, suppose that A is Noetherian. The sum

At = @A,
n=1

is an ideal of A, whose residue class ring is A,, which is thus a homomorphic
image of A, and is therefore Noetherian. Furthermore, A* has a finite number
of generators x, ..., x, by hypothesis. Expressing each generator as a sum of
homogeneous elements, we may assume without loss of generality that these
generators are homogeneous, say of degrees d,, ..., d; respectively, with all
d; > 0. Let B be the subring of A generated over 4, by x,,..., x,. We claim
that 4, = B for all n. This is certainly true for n = 0. Let n > 0. Let x be
homogeneous of degree n. Then there exist elements g; € A, _,, such that

N
X =) ax;.
i=1

Since d; > 0 by induction, each g; is in Ag[x, ..., x;] = B, so this shows x € B
also, and concludes the proof.

We shall now see two ways of constructing graded rings from filtrations.
First, let A be a ring and a an ideal. We view A as a filtered ring, by the
powers a”. We define the first associated graded ring to be

S(A)=8§= @ a”.
n=0
Similarly, if E is an A-module, and E is filtered by an a-filtration, we define
ES = @ En.
n=0

Then it is immediately verified that Eg is a graded S-module.

Observe that if 4 is Noetherian, and a is generated by elements x,, ..., x;
then S is generated as an A-algebra also by x,, ..., x,, and is therefore also
Noetherian.

Lemma 5.3. Let A be a Noetherian ring, and E a finitely generated module,
with an a-filtration. Then Eg is finite over S if and only if the filtration of E
is a-stable.

Proof. Let
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and let
G,=E,® - ®E,®eE,®’E,®’E, @ -
Then G, is an S-submodule of Eg, and is finite over § since F, is finite over A.
We have
G,=G,,, and )G, = E;.
Since S is Noetherian, we get:
E is finite over S < Eg = G, for some N
<Ey,,=ad"Eyforallm =0
<> the filtration of E is a-stable.

This proves the lemma.

Theorem 5.4. (Artin-Rees). Let A be a Noetherian ring, a an ideal, E a
finite A-module with a stable a-filtration. Let F be a submodule, and let
F,=FnE,. Then {F,}isa stable a-filtration of F.

Proof. We have
aF "nE)caF naE, c FNnE, |,

so {F,} is an a-filtration of F. We can then form the associated graded S-module
Fg,which is a submodule of Eg, and is finite over § since S is Noetherian. We
apply Lemma 5.3 to conclude the proof.

We reformulate the Artin-Rees theorem in its original form as follows.

Corollary 5.5. Ler A be a Noetherian ring, E a finite A-module, and F a
submodule. Let a be an ideal. There exists an integer s such that for all
integers n = s we have

a"EnF =a"" %a°E N F).
Proof. Special case of Theorem 5.4 and the definitions.

Theorem 5.6. (Krull). Let A be a Noetherian ring, and let a be an ideal
contained in every maximal ideal of A. Let E be a finite A-module. Then

) a"E = 0.

n=1

Proof. Let F = () a"E and apply Nakayama’s lemma to conclude the
proof.



430 NOETHERIAN RINGS AND MODULES X, §5

Corollary 5.7. Ler o be a local Noetherian ring with maximal ideal m. Then

([ m"=0.
n=1

Proof. Special case of Theorem 5.6 when E = A.

The second way of forming a graded ring or module is done as follows. Let
A be aring and a an ideal of A. We define the second associated graded ring

o0

gr(d) = P a"a"" .

n=0
Multiplication is defined in the obvious way. Let a € a” and let a denote its
residue class mod a"*!. Let b e a™ and let b denote its residue class mod a™* 1.

We define the product @b to be the residue class of ab mod a™*"* !, It is easily
verified that this definition is independent of the choices of representatives and
defines a multiplication on gr,(4) which makes gr,(4) into a graded ring.

Let E be a filtered 4-module. We define

gr(E) = @ En/En+ 1
n=0
If the filtration is an a-filtration, then gr(E) is a graded gr,(4)-module.

Proposition 5.8. Assume that A is Noetherian, and let a be an ideal of A.
Then gr(A) is Noetherian. If E is a finite A-module with a stable a-filtration,
then gr(E) is a finite gr,(A)-module.

Proof. Let x,, ..., x, be generators of a. Let X; be the residue class of x;
in a/a®. Then

grn(A) = (A/a)[xb cre is]

is Noetherian, thus proving the first assertion. For the second assertion, we
have for some d,

E;,i,=0a"E, forallm = 0.
Hence gr(E) is generated by the finite direct sum

gr(E)o @ - - - @ gr(Ey.

But each gr(E), = E,/E, ., is finitely generated over 4, and annihilated by a,
so is a finite A/a-module. Hence the above finite direct sum is a finite 4/a-
module, so gr(E) is a finite gr,(4)-module, thus concluding the proof of the
proposition.
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§6. THE HILBERT POLYNOMIAL

The main point of this section is to study the lengths of certain filtered
modules over local rings, and to show that they are polynomials in appropriate
cases. However, we first look at graded modules, and then relate filtered
modules to graded ones by using the construction at the end of the preceding
section.

We start with a graded Noetherian ring together with a finite graded A-module
E, so

A=§An and E=§)En.

We have seen in Proposition 5.2 that A, is Noetherian, and that A is a finitely
generated Aj-algebra. The same type of argument shows that E has a finite number
of homogeneous generators, and E, is a finite Ag-module for all n = 0.

Let ¢ be an Euler-Poincaré Z-valued function on the class of all finite
Ag-modules, as in Chapter 111, §8. We define the Poincaré series with respect
to ¢ to be the power series

P(E, 1) = ) o(E)" € Z[[1]].
n=0
We write P(E, t) instead of P ,(E, t) for simplicity.

Theorem 6.1. (Hilbert-Serre). Let s be the number of generators of A as
Ag-algebra. Then P(E, t) is a rational function of type

P(E, ) = _s_fitl__
IT@ -
i=1
with suitable positive integers d;, and f(t) € Z[t].
Proof. Induction on s. For s = 0 the assertion is trivially true. Let s = 1.

Let A = Agylxy, ..., x], deg. x; = d; = 1. Multiplication by x; on E gives rise
to an exact sequence

0- Kn - En {i) En+ds - Ln+ds -0
Let

K=@K, and L=@L,.
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Then K, L are finite A-modules (being submodules and factor modules of E),
and are annihilated by x,, so are in fact graded Agy[x, ..., x,_,]-modules. By
definition of an Euler-Poincaré function, we get

o(K,) — 0(E,) + @(E,+4) — @(Lyry) = 0.
Multiplying by **“ and summing over n, we get

(1 — t*)P(E, t) = P(L,t) — t*P(K, t) + g(t),
where g(t) is a polynomial in Z[t]. The theorem follows by induction.

Remark. In Theorem 6.1,if 4 = Ay[x,, ..., x,] then d; = deg x; as shown
in the proof. The next result shows what happens when all the degrees are
equal to 1.

Theorem 6.2. Assume that A is generated as an Ay-algebra by homogeneous
elements of degree 1. Let d be the order of the pole of P(E, t) att = 1. Then
for all sufficiently large n, o(E,) is a polynomial in n of degree d — 1. (For
this statement, the zero polynomial is assumed to have degree —1.)

Proof. By Theorem 6.1, ¢(E,) is the coefficient of #” in the rational function
P(E, 1) = f(1)/(1 — 1)".
Cancelling powers of 1 — t, we write P(E, t) = h(t)/(1 — t)*, and h(1) # 0, with
h(t) € Z[t]. Let
h(t) = Y at~
k=0

We have the binomial expansion

S fd+ k-1
(l—t)“‘:z< ;_1 )t".

k=0

For convenience we let ( rll) = 0 forn 2 0 and ( rlz) =1forn=—1. We

then get

(p(E")= Zak d—l

k=0

<d+n—k—1> foralln = m.

The sum on the right-hand side is a polynomial in # with leading term

d—1

n
(Z%)m#o

This proves the theorem.
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The polynomial of Theorem 6.2 is called the Hilbert polynomial of the
graded module E, with respect to ¢.

We now put together anumber of results of this chapter, and give an application
of Theorem 6.2 to certain filtered modules.

Let A be a Noetherian local ring with maximal ideal m. Let q be an m-
primary ideal. Then A4/q is also Noetherian and local. Since some power of m
is contained in g, it follows that A/q has only one associated prime, viewed as
module over itself, namely m/q itself. Similarly, if M is a finite 4/q-module,
then M has only one associated prime, and the only simple A/q-module is in
fact an A/m-module which is one-dimensional. Again since some power of m
is contained in g, it follows that 4/q has finite length, and M also has finite
length. We now use the length function as an Euler-Poincaré function in
applying Theorem 6.2.

Theorem 6.3. Let A be a Noetherian local ring with maximal ideal m.
Let q be an m-primary ideal, and let E be a finitely generated A-module, with
a stable q-filtration. Then:

(i) E/E, has finite length for n = 0.

(i) For all sufficiently large n, this length is a polynomial g(n) of degree < s,
where s is the least number of generators of q.

(ii) The degree and leading coefficient of g(n) depend only on E and q, but not
on the chosen filtration.

Proof. Let
G =gry(4) = Da"/a"* .
Thengr(E) = (P E,/E, . , isa graded G-module,and G, = 4/q. By Proposition

5.8, G is Noetherian and gr(E) is a finite G-module. By the remarks preceding
the theorem, E/E, has finite length, and if ¢ denotes the length, then

o(E/E,) = _Z P(E;—1/E)).

If x,, ..., x, generate q, then the images X,, ..., X, in q/q* generate G as A/q-
algebra, and each X; has degree 1. By Theorem 6.2 we see that

O(EA/E, 1) = h(n)
is a polynomial in n of degree < s — 1 for sufficiently large n. Since
@(E/E,+1) — ¢(E/E,) = h(n),

it follows by Lemma 6.4 below that ¢(E/E,) is a polynomial g(n) of degree
= s for all large n. The last statement concerning the independence of the degree
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of g and its leading coefficient from the chosen filtration follows immediately
from Proposition 5.1, and will be left to the reader. This concludes the proof.

From the theorem, we see that there is a polynomial g , such that

X,q(n) = length(E/q"E)

for all sufficiently large n. If E = A, then y, , is usually called the characteristic
polynomial of q. In particular, we see that

X4,qo(n) = length(4/q")

for all sufficiently large n.

For a continuation of these topics into dimension theory, see [AtM 69] and
[Mat 80].

We shall now study a particularly important special case having to do with
polynomial ideals. Let & be a field, and let

A =KXy ..., Xyl

be the polynomial ring in N + 1 variable. Then A is graded, the elements of
degree n being the homogeneous polynomials of degree n. We let a be a homo-
geneous ideal of A, and for an integer n = 0 we define:

¢(n) = dim; A,
¢(n, a) = dimg a,
x(n, a) = dimy An/an = dim A, — dimy a, = @o(n) — @(n, a).

As earlier in this section, A,, denotes the k-space of homogeneous elements of
degree n in A, and similarly for a,. Then we have

) (N + n>

n) = .

¢ N

We shall consider the binomial polynomial
_Tr-1)---T—-d+1 _Z‘f

1) (Z) = 7 =7 + lower terms.

If fis a function, we define the difference function Af by
Af(T) = (T + 1) = f(T).

Then one verifies directly that

@ A(ﬁ) B <df 1)'
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Lemma 6.4. Ler P € Q[T] be a polynomial of degree d with rational
coefficients.

(a) If P(n) € Z for all sufficiently large integers n, then there exist integers
Cos - - -, Cg SUCh that

PT) = co<z> + Cl(d i 1) + ...+ ¢y

In particular, P(n) € Z for all integers n.

(b) If f: Z — Z is any function, and if there exists a polynomial Q(T) € Q|[T]
such that Q(Z) C Z and Af(n) = Q(n) for all n sufficiently large, then
there exists a polynomial P as in (a) such that f (n) = P(n) for all n sufficiently
large.

Proof. We prove (a) by induction. If the degree of P is 0, then the assertion
is obvious. Suppose deg P = 1. By (1) there exist rational numbers ¢, . . ., ¢;
such that P(T) has the expression given in (a). But AP has degree strictly smaller
than deg P. Using (2) and induction, we conclude that ¢, ..., ¢,_; must be
integers. Finally c, is an integer because P(n) € Z for n sufficiently large. This
proves (a).

As for (b), using (a), we can write

T
o) = CO(d—— 1) + ...+ oy

with integers ¢g, ..., ¢;_;. Let P| be the “integral” of Q, that is

T T
PI(T):C0<d>+ +Cd—l<1>’ SO APIZQ

Then A(f — P)(n) = 0 for all n sufficiently large. Hence (f — P,)(n) is equal
to a constant c, for all n sufficiently large, so we let P = P; + ¢, to conclude
the proof.

Proposition 6.5. Let a,b be homogeneous ideals in A. Then

o(n,a+b) = @n,a) + ¢(n,b) — @(n,aNb)
x(n,a+b) = x(n,a) + x(n,b) — x(n, an b).

Proof. The first is immediate, and the second follows from the definition
of x.
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Theorem 6.6. Let F be a homogeneous polynomial of degree d. Assume that
F is not a divisor of zero mod a, that is: if G € A, FG € a, then G € a. Then

x(n,a+ (F)) = x(n,a) — x(n — d, a).

Proof. First observe that trivially
e(n, (F)) = o(n — d),

because the degree of a product is the sum of the degrees. Next, using the
hypothesis that F is not divisor of 0 mod a, we conclude immediately

e(n, aN (F)) = @(n — d,a).
Finally, by Proposition 6.5 (the formula for x), we obtain:

Xx(n, a + (F)) = x(n,a) + x(n, (F)) — x(n, a N (F))
= x(n,a) + o(n) — ¢(n, (F)) — ¢(n) + o(n, a N (F))
= x(n,a) — o(n — d) + ¢(n — d,a)
= x(n,a) — x(n — d,a)
thus proving the theorem.

We denote by m the maximal ideal m = (X,, ..., Xy) in A. We call m the
irrelevant prime ideal. An ideal is called irrelevant if some positive power of
m is contained in the ideal. In particular, a primary ideal q is irrelevant if and
only if m belongs to q. Note that by the Hilbert nullstellensatz, the condition
that some power of m is contained in a is equivalent with the condition that the
only zero of a (in some algebraically closed field containing k) is the trivial zero.

Proposition 6.7. Letr a be a homogeneous ideal.

(a) If a is irrelevant, then x(n, a) = 0 for n sufficiently large.

(b) In general, there is an expression a = q; N ... N q, as a reduced primary
decomposition such that all g; are homogeneous.

(¢) If an irrelevant primary ideal occurs in the decomposition, let b be the
intersection of all other primary ideals. Then

x(n, a) = x(n,b)
for all n sufficiently large.

Proof. For (a), by assumption we have A, = a, for n sufficiently large, so
the assertion (a) is obvious. We leave (b) as an exercise. As to (c), say q; is
irrelevant, and let b = q; N ... N q,_;. By Proposition 6.5, we have

x(n, b+ aq) = x(n,b)+ x(n,q,) — x(n,a).

But b + q is irrelevant, so (c) follows from (a), thus concluding the proof.
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We now want to see that for any homogeneous ideal a the function f such
that

f(n) = x(n,a)

satisfies the conditions of Lemma 6.4(b). First, we observe that if we change
the ground field from k to an algebraically closed field K containing k, and we
let Ax = K[Xy, ..., Xyl, ax = Ka, then

dim; A, = dimg A, and dimy a, = dimg ag ,.

Hence we can assume that & is algebraically closed.

Second, we shall need a geometric notion, that of dimension. Let V be a
variety over k, say affine, with generic point (x) = (x,, ..., xy). We define its
dimension to be the transcendence degree of k(x) over k. For a projective variety,
defined by a homogeneous prime ideal p, we define its dimension to be the
dimension of the homogeneous variety defined by p minus 1.

We now need the following lemma.

Lemma 6.8. Let V, W be varieties over a field k.
IfVDODWand dimV = dim W, then V = W.

Proof. Say V, W are in affine space AV. Let p, and py, be the respective
prime ideals of V and W in k[X]. Then we have a canonical homomorphism

kIX1/py = klx] = k[y] = k[X]/pw

from the affine coordinate ring of V onto the affine coordinate ring of W. If the
transcendence degree of k(x) is the same as that of k(y), and say y,, ..., y, form
a transcendence basis of k(y) over k, then x,, ..., x, is a transcendence basis
of k(x) over k, the homomorphism k[x] — k[y] induces an isomorphism

k[xy, ..., x,] = kfy;,..<, ],

and hence an isomorphism on the finite extension k[x] to k[y], as desired.

Theorem 6.9. Let a be a homogeneous ideal in A. Let r be the maximum
dimension of the irreducible components of the algebraic space in projective
space defined by a. Then there exists a polynomial P € Q[T] of degree = r,
such that P(Z) C Z, and such that

P(n) = x(n, a)
for all n sufficiently large.



